

VBA Made Easy

Loops
09

www.accessallinone.com

1 | P a g e

This guide was prepared for AccessAllInOne.com by:
Robert Austin

This is one of a series of guides pertaining to the use of Microsoft Access.

© AXLSolutions 2012
All rights reserved. No part of this work may be reproduced in any form, or by any means,
without permission in writing.

2 | P a g e

Contents

Loops .. 3

A Word of Warning – Infinite Loops .. 3

For…Next .. 3

The Standard Syntax For A For…Next Loop .. 3

For…Step…Next .. 5

Using Step To Count Backwards .. 6

Using Dynamic startValue, endValue and stepValues ... 6

For…Each .. 7

Using Loops with Collections ... 8

Exit For .. 10

While…Wend ... 11

Exit While .. 13

Loop/Do…Until/While ... 15

Do…While ... 15

Nested Loops .. 19

Nested Loops and Multidimensional Arrays .. 20

A Useful Implementation of Nested Loops .. 21

DoEvents ... 22

Questions .. 23

Answers ... 26

3 | P a g e

Loops
After conditionals and arrays, loops form the next major component in VBA. A loop is a

block of code that executes again and again until either an expression equates to false or is

broken by way of an Exit statement.

What makes loops useful is that they can work with arrays and collections; they can perform

tasks over and over until a condition is met and they can perform calculations over and over

until you force them to stop.

There are several ways to express this need to loop and VBA isn’t short on constructs for

doing that. So we will get straight into a For loop, but first…

A Word of Warning – Infinite Loops

If you get stuck in an infinite loop or the loop is taking a lot longer than you expected, use

CTRL + Break to stop VBA from executing.

For…Next

A For loop goes around and around incrementing some variable counter by a figure you

determine (the default is 1). It executes a code block between the keywords For and Next

until some condition with the variable is met.

The Standard Syntax For A For…Next Loop

Let’s get straight into the code and see what a For loop does.

1

2

3

For counter = start To end

 ...

next i

Figure 9.1

The code block contains a Debug.Print statement which prints the value of i. The For

statement increments i by 1 on each iteration and stops when i gets to 10. Although i

increments by 1, we can change the way it increments.

1

2

3

4

5

6

7

8

9

10

Sub forLoop2()

 Dim i As Integer

 For i = 1 To 10

 Debug.Print i

 i = i + 1

 'Because of the above statement

 'this loop will increment by 2

 Next i

End Sub

 The output to the immediate window will be:

1

3

5

7

9

Figure 9.2

4 | P a g e

Here forLoop2 executes the code block but adds an extra 1 on each iteration.

What happens if we start the For loop at 10 instead of 1?

1

2

3

4

5

6

7

8

9

10

11

Sub forLoop3()

 Dim i As Integer

 For i = 10 To 1

 'Starting i at 10 means that this

 'loop will not print anything out

 'as it (by default) increments and

 'there is nothing after 10

 Debug.Print i

 Next i

End Sub

Figure 9.3

Well, nothing actually. The for loop moves forward by default and as 10 is the maximum

number in the range, it has nowhere else to go!

Although we are incrementing i, we are also able to increment other variables inside the loop.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Sub forLoop4()

 Dim i As Integer

 Dim t As Integer

 t=0

 For i = 1 To 10

 Debug.Print t

 t = t + 3

 'Although we are incrementing the

 'i variable, we are printing out

 'the value associated with the t

 'variable

 Next i

End Sub

 The output to the immediate window will be:

0

3

6

9

12

15

18

21

24

27

Figure 9.4

In the code below, we demonstrate that the end value of the For loop (5+5) can be an

expression.

5 | P a g e

1

2

3

4

5

6

7

8

9

10

Sub forLoop5()

 Dim i As Integer

 Dim t As Integer

 For i = 1 To 5 + 5

 'Here we are using an expression (5+5)

 'rather than simply using the number 10

 Debug.Print i

 Next i

End Sub

Figure 9.5

For…Step…Next

In forLoop2 we adjusted the counter i to increment by an additional 1 for each loop. We can

do the same by using the Step option in the For loop

Step tells the For Loop to increment its counter by a value other than the default value of 1.

1

2

3

4

5

6

7

8

9

10

Sub forLoop6()

 Dim i As Integer

 For i = 1 To 10 Step 2

 'We are using the Step command

 'to increment i by 2 on each

 'iteration

 Debug.Print i

 Next i

End Sub

 The output to the immediate window will be:

1

3

5

7

9

Figure 9.6

6 | P a g e

Using Step To Count Backwards

We can go backwards through a loop by using Step – 1 in the For Loop.

1

2

3

4

5

6

7

8

9

Sub forLoop7()

 Dim i As Integer

 For i = 10 To 1 Step -1

 'This is how you go backwards through

 'a for loop : Step -1

 Debug.Print i

 Next i

End Sub

 The output to the immediate window will be:

10

9

8

7

6

5

4

3

2

1

Figure 9.7

Using Dynamic startValue, endValue and stepValues

In the below code, startValue, endValue and stepValue are all expressions, so as long as

the expressions evaluate to a number, the For Loop will accept them. Here we start at 4,

step by 3 and finish at 16.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Sub forLoop8()

 Dim startValue As Integer

 Dim endValue As Integer

 Dim stepValue As Integer

 Dim i As Integer

 startValue = 4

 endValue = 16

 stepValue = 3

 For i = startValue To endValue Step stepValue

 'Each part of the for expression now contains

 'a variable

 Debug.Print i

 Next i

End Sub

 The output to the immediate window will be:

4

7

10

13

16

Figure 9.8

7 | P a g e

For…Each

The For…Each loop differs from a For…Next loop in that it iterates over arrays and

collections and therefore knows how many iterations to perform.

Let’s take a look at the For…Each loop over a standard array.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Sub forEachArray()

 Dim element As Variant

 Dim animals(0 To 5) As String

 'We have created an array that can hold 6 elements

 animals(0) = "Dog"

 animals(1) = "Cat"

 animals(2) = "Bird"

 animals(3) = "Buffalo"

 animals(4) = "Snake"

 animals(5) = "Duck-billed Platypus"

 'We fill each element of the array

 For Each element In animals

 'animals consists of 6 "elements"

 Debug.Print element

 'printing to the immediate window

 Next

End Sub

 The output to the immediate window will be:

Dog

Cat

Bird

Buffalo

Snake

Duck-billed Platypus

Figure 9.9

8 | P a g e

Using Loops with Collections

Let’s take a look at the For…Each loop over a collection.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Public Sub forEachCollection1()

 Dim element As Variant

 Dim animals As Collection

 Set animals = New Collection

 'Collections are literally collections of objects

 'and are a useful feature of MS Access

 'They have 4 methods - add, count, item, remove

 animals.Add "Dog"

 animals.Add "Cat"

 animals.Add "Bird"

 animals.Add "Buffalo"

 animals.Add "Snake"

 animals.Add "Duck-billed Platypus"

 'We utilise the add method to add the various

 'animals to the collection

 For Each element In animals

 Debug.Print element

 Next

 'We print out all the elements in the

 'animals collection

 animals.Remove 3

 'We remove an element from the animals collection

 'we are removing the 3rd item in the collection (bird)

 Debug.Print ""

 'prints a blank line

 For Each element In animals

 Debug.Print element

 'printing to the immediate window

 Next

 'Here we are printing out all the elements in the

 'animals collection minus the bird

End Sub

 The output to the immediate window will be:

Dog

Cat

Bird

Buffalo

Snake

Duck-billed Platypus

Dog

Cat

Buffalo

Snake

Duck-billed Platypus

Figure 9.10

9 | P a g e

Access contains some collections of its own! Knowing how to utilise these collections, can

make life much simpler when coding.

1

2

3

4

5

6

7

8

9

10

11

12

13

Sub forEachCollection2()

 Dim i As Integer

 For i = 0 To CurrentProject.AllForms.Count - 1

 'CurrentProject.AllForms is a collection and

 'therefore has the add, count, item and remove

 'methods available

 Debug.Print CurrentProject.AllForms(i).Name

 'Here we print the names of the forms to the

 'immediate window

 Next

End Sub

 In a database with 3 forms (Form1, Form2, Form3), the output to the immediate
window would be:

Form1

Form2

Form3

Figure 9.11

Let’s take a look at how to exit a for each loop.

10 | P a g e

Exit For

To leave the For Each loop before its natural end, we can use the Exit For statement.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Sub forEachExit()

 Dim element As Variant

 Dim animals(0 To 5) As String

 'We have created an array that can hold 6 elements

 animals(0) = "Dog"

 animals(1) = "Cat"

 animals(2) = "Bird"

 animals(3) = "Buffalo"

 animals(4) = "Snake"

 animals(5) = "Duck-billed Platypus"

 'Here we fill each element of the array

 For Each element In animals

 'iterates over the animals collection

 Debug.Print element

 'print each element to the immediate window

 If element = "Buffalo" Then Exit For

 'if, at any point, the element becomes equal

 Next

End Sub

 The output to the immediate window will be (we exited the loop before

all items could be printed):

Dog

Cat

Bird

Buffalo

Figure 9.12

11 | P a g e

While…Wend

A While loop executes its code blocks over and over until its expression is not True.

The basic syntax of a while loop is:

1

2

3

While(someExpression)

...

Wend

Figure 9.13

The loop will continue to operate as long as someExpression is equal to true. When it

becomes false, the while loop exits.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Sub whileLoopArray()

 Dim i As Long

 Dim kitchenItems(0 To 5) As String

 'We have created an array that can hold 6 elements

 kitchenItems(0) = "Cooker"

 kitchenItems(1) = "Fridge"

 kitchenItems(2) = "Cutlery"

 kitchenItems(3) = "Crockery"

 kitchenItems(4) = "Dishwasher"

 kitchenItems(5) = "Table and Chairs"

 'Here we fill each element of the array

 i = 0

 While (i < UBound(kitchenItems) + 1)

 'This line of code essentially says:

 ' As long as the value of i is less

 'than 6 execute the next line. Otherwise

 'exit the loop

 Debug.Print "Item " & CStr(i) & " is " & kitchenItems(i)

 'This line prints a string to the immediate window.

 'An example would be:

 'Item 4 is Dishwasher

 i = i + 1

 'We need to increment i or we will be stuck

 'in a loop forever...

 Wend

End Sub

 The output to the immediate window will be:

Item 0 is Cooker

Item 1 is Fridge

Item 2 is Cutlery

Item 3 is Crockery

Item 4 is Dishwasher

Item 5 is Table and Chairs

Figure 9.14

12 | P a g e

The While Loop is often used to cycle through Recordsets and Files.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Sub whileLoopRecordset()

On Error GoTo ErrorHandler

Dim strSQL As String

Dim rs As DAO.Recordset

strSQL = "tblTeachers"

'For the purposes of this post, we are simply going to make

'strSQL equal to tblTeachers.

'You could use a full SELECT statement such as:

'SELECT * FROM tblTeachers (this would produce the same result in

fact).

'You could also add a Where clause to filter which records are

returned:

'SELECT * FROM tblTeachers Where ZIPPostal = '98052'

' (this would return 5 records)

Set rs = CurrentDb.OpenRecordset(strSQL)

'This line of code instantiates the recordset object!!!

'In English, this means that we have opened up a recordset

'and can access its values using the rs variable.

With rs

 If Not .BOF And Not .EOF Then

 'We don’t know if the recordset has any records,

 'so we use this line of code to check. If there are no records

 'we won’t execute any code in the if..end if statement.

 .MoveLast

 .MoveFirst

 'It is not necessary to move to the last record and then back

 'to the first one but it is good practice to do so.

 While (Not .EOF)

 'With this code, we are using a while loop to loop

 'through the records. If we reach the end of the recordset, .EOF

 'will return true and we will exit the while loop.

 Debug.Print rs.Fields("teacherID") & " " & rs.Fields("FirstName")

 'prints info from fields to the immediate window

 .MoveNext

 'We need to ensure that we use .MoveNext,

 'otherwise we will be stuck in a loop forever…

 '(or at least until you press CTRL+Break)

 Wend

 End If

 .Close

 'Make sure you close the recordset...

End With

ExitSub:

 Set rs = Nothing

 '..and set it to nothing

13 | P a g e

59

60

61

62

63

64

 Exit Sub

ErrorHandler:

 Resume ExitSub

End Sub

 The output to the immediate window will be:

1 Anna

2 Antonio

3 Thomas

4 Christina

5 Martin

6 Francisco

7 Ming-Yang

8 Elizabeth

9 Sven

Figure 9.15

Exit While

To exit a while loop isn’t as trivial a task as with other looping structures. To exit a While

one must force the While expression to be false.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Sub whileLoopExit()

 Dim i As Long

 Dim kitchenItems(0 To 5) As String

 'We have created an array that can hold 6 elements

 Dim stayInLoop As Boolean

 'This is the variable we will use for the

 'condition of the while loop

 kitchenItems(0) = "Cooker"

 kitchenItems(1) = "Fridge"

 kitchenItems(2) = "Cutlery"

 kitchenItems(3) = "Crockery"

 kitchenItems(4) = "Dishwasher"

 kitchenItems(5) = "Table and Chairs"

 'Here we fill each element of the array

 i = 0

 stayInLoop = True

 'sets stayInLoop as true

 While (stayInLoop)

 'As long as stayInLoop resolves to true,

 'we will stay in the loop

 Debug.Print "Item " & CStr(i) & " is " & kitchenItems(i)

 'This line prints a string to the immediate window.

 'An example would be:

 'Item 4 is Dishwasher

 i = i + 1

 If i = 3 Then

 'If, at any point, i becomes equal to 3, we will change

14 | P a g e

37

38

39

40

41

42

43

44

 'stayInLoop to false and exit the while loop

 stayInLoop = False

 End If

 Wend

End Sub

 The output to the immediate window will be:

Item 0 is Cooker

Item 1 is Fridge

Item 2 is Cutlery

Figure 9.16

15 | P a g e

Loop/Do…Until/While

The Do loops are another set of statements that perform like a While loop and permit exiting

the loop at any point without changing the statement’s expression.

Do…While

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Sub doWhile1()

 Dim i As Long

 Dim kitchenItems(0 To 5) As String

 'We have created an array that can hold 6 elements

 kitchenItems(0) = "Cooker"

 kitchenItems(1) = "Fridge"

 kitchenItems(2) = "Cutlery"

 kitchenItems(3) = "Crockery"

 kitchenItems(4) = "Dishwasher"

 kitchenItems(5) = "Table and Chairs"

 'Here we fill each element of the array

 i = 0

 Do While (i < UBound(kitchenItems) + 1)

 'This line of code essentially says:

 ' As long as the value of i is less

 'than 6 execute the next line. Otherwise

 'exit the loop

 Debug.Print "Item " & CStr(i) & " is " & kitchenItems(i)

 'This line prints a string to the immediate window.

 'An example would be:

 'Item 4 is Dishwasher

 i = i + 1

 'We need to increment i or we will be stuck

 'in a loop forever...

 Loop

End Sub

 The output to the immediate window will be:

Item 0 is Cooker

Item 1 is Fridge

Item 2 is Cuttlery

Item 3 is Crockery

Item 4 is Dishwasher

Item 5 is Table and Chairs

Figure 9.17

16 | P a g e

doWhile2 below performs the same operation as doWhile1 above except it uses Exit Do to

exit the loop.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Sub doWhile2()

 Dim i As Long

 Dim kitchenItems(0 To 5) As String

 'We have created an array that can hold 6 elements

 kitchenItems(0) = "Cooker"

 kitchenItems(1) = "Fridge"

 kitchenItems(2) = "Cutlery"

 kitchenItems(3) = "Crockery"

 kitchenItems(4) = "Dishwasher"

 kitchenItems(5) = "Table and Chairs"

 'Here we fill each element of the array

 i = 0

 Do While (True)

 'Because True evaluates to true (obviously) we have

 'created a never-ending loop. We will need to force

 'an exit if we want to leave

 Debug.Print "Item " & CStr(i) & " is " & kitchenItems(i)

 'This line prints a string to the immediate window.

 'An example would be:

 'Item 4 is Dishwasher

 i = i + 1

 'We need to increment i or we will be stuck

 'in a loop forever...

 If i = UBound(kitchenItems) + 1 Then Exit Do

 'This line of code essentially says:

 ' If, at any point, the value of i becomes

 'greater than 6, exit the do loop

 Loop

End Sub

 The output to the immediate window will be:

Item 0 is Cooker

Item 1 is Fridge

Item 2 is Cuttlery

Item 3 is Crockery

Item 4 is Dishwasher

Item 5 is Table and Chairs

Figure 9.18

17 | P a g e

Do Until executes its code block until a certain condition is met.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Sub doUntil()

 Dim i As Long

 Dim kitchenItems(0 To 5) As String

 'We have created an array that can hold 6 elements

 kitchenItems(0) = "Cooker"

 kitchenItems(1) = "Fridge"

 kitchenItems(2) = "Cutlery"

 kitchenItems(3) = "Crockery"

 kitchenItems(4) = "Dishwasher"

 kitchenItems(5) = "Table and Chairs"

 'Here we fill each element of the array

 i = 0

 Do Until (False)

 'The Do until Loop fires until a condition is met

 'Because False can never evaluate to true (obviously)

 'we have created a never-ending loop. We will need

 'to force an exit if we want to leave

 Debug.Print "Item " & CStr(i) & " is " & kitchenItems(i)

 'This line prints a string to the immediate window.

 'An example would be:

 'Item 4 is Dishwasher

 i = i + 1

 'We need to increment i or we will be stuck

 'in a loop forever...

 If i = UBound(kitchenItems) + 1 Then Exit Do

 'This line of code essentially says:

 'If, at any point, the value of i becomes

 'equal to 6, exit the do loop

 Loop

End Sub

 The output to the immediate window will be:

Item 0 is Cooker

Item 1 is Fridge

Item 2 is Cutlery

Item 3 is Crockery

Item 4 is Dishwasher

Item 5 is Table and Chairs

Figure 9.19

18 | P a g e

Finally, the Do…Loop executes until you force it to stop.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Sub doLoop()

 Dim i As Long

 Dim kitchenItems(0 To 5) As String

 'We have created an array that can hold 6 elements

 kitchenItems(0) = "Cooker"

 kitchenItems(1) = "Fridge"

 kitchenItems(2) = "Cutlery"

 kitchenItems(3) = "Crockery"

 kitchenItems(4) = "Dishwasher"

 kitchenItems(5) = "Table and Chairs"

 'Here we fill each element of the array

 i = 0

 Do

 'The Do loop just does! There is no condition

 'to evaluate to so we will need to force an exit.

 Debug.Print "Item " & CStr(i) & " is " & kitchenItems(i)

 'This line prints a string to the immediate window.

 'An example would be:

 'Item 4 is Dishwasher

 i = i + 1

 'We need to increment i or we will be stuck

 'in a loop forever...

 If i = UBound(kitchenItems) + 1 Then Exit Do

 'This line of code essentially says:

 'If, at any point, the value of i becomes

 'equal to 6, exit the do loop

 Loop

End Sub

 The output to the immediate window will be:

Item 0 is Cooker

Item 1 is Fridge

Item 2 is Cutlery

Item 3 is Crockery

Item 4 is Dishwasher

Item 5 is Table and Chairs

Figure 9.20

19 | P a g e

Nested Loops

A loop inside a loop is termed a nested loop. We’ll make a grid of numbers to illustrate.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Sub nestedLoop1()

 Dim y As Integer

 Dim x As Integer

 Dim xString As String

 For y = 0 To 9

 'We start by looping through 0 - 9. This will provide

 'us with 10 loops

 For x = 0 To 9

 'Adding a second loop will mean that we end up

 'looping a hundred times (10 x 10)

 xString = xString & x & " "

 'On each loop we are concatenating the x

 'variable with a space so we have a line that

 'goes 0 1 2 3 4 5 etc.

 Next x

 Debug.Print xString

 'Here we print out the full xString

 xString = ""

 'We reset the xString to nothing

 Next y

End Sub

 The output in the immediate window will be:

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Figure 9.21

20 | P a g e

Nested Loops and Multidimensional Arrays

Nested loops work very well with multidimensional arrays.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Sub nestedLoop2()

 Dim y As Integer

 Dim x As Integer

 Dim xString As String

 Dim MyArray(10, 10) As String

 'Here we have a multidimensional array of 10 x 10

 'This array will be able to hold 100 items

 For y = 0 To 9

 '10 loops here...

 For x = 0 To 9

 '...and 10 more here give us 100 loops!

 MyArray(y, x) = y * x

 'We fill the array element with the

 'multiple of x and y

 Next x

 Next y

 For y = 0 To 9

 For x = 0 To 9

 'And now we loop again and print out the

 'results of the code above

 xString = xString & MyArray(y, x) & " "

 Next x

 Debug.Print xString

 xString = ""

 Next y

End Sub

 The output in the immediate window will be:

0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

0 2 4 6 8 10 12 14 16 18

0 3 6 9 12 15 18 21 24 27

0 4 8 12 16 20 24 28 32 36

0 5 10 15 20 25 30 35 40 45

0 6 12 18 24 30 36 42 48 54

0 7 14 21 28 35 42 49 56 63

0 8 16 24 32 40 48 56 64 72

0 9 18 27 36 45 54 63 72 81

Figure 9.22

21 | P a g e

A Useful Implementation of Nested Loops

A more practical example is to iterate over a Collection within a Recordset.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Sub nestedLoop3()

 Dim rs As DAO.Recordset, field As DAO.field

 Dim rowText As String

 Set rs = CurrentDb.OpenRecordset("SELECT * FROM tblStudents")

 While (Not rs.EOF)

 'Loop no1

 For Each field In rs.Fields

 'Loop no2

 'we will be looping through all of the field names in tblStudents

 rowText = rowText & field.Name & "=" & rs.Fields(field.Name) & ", "

 'we use the field name to get the value of that field and create

 'a concatenated string to print out.

 'e.g. StudentID=15, LastName=Kupova, etc.

 Next

 Debug.Print rowText

 rowText = ""

 rs.MoveNext

 Wend

End Sub

 nestedLoop3

StudentID=1, LastName=Bedecs, FirstName=Anna ‘ … more commented out

StudentID=2, LastName=Gratacos Solsona, FirstName=Antonio ‘…

StudentID=3, LastName=Axen, FirstName=Thomas, ‘…

Figure 9.23

Here the Fields collection is being iterated over and rowText populated with the field’s name

and value.

Note: The On Error statement forces VBA to skip any error messages and Resume
Execution.

22 | P a g e

DoEvents

DoEvents is a simple command that pauses a loop and allows the operating system to carry

out any tasks that have been queued.

If you have a loop that can take a significant time to fire, DoEvents enables the loop to pause

at periodic intervals. In the code below, we have created a very long loop and added in a

DoEvents command every 1 second or so.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Sub CPUTask()

 Dim t As Double, zzz As Single

 Debug.Print "CPUTask2 Start Now() = " & Now()

 For t = 1 To 100000000

 'We create a loop that will take 5-10 seconds to

 'complete

 zzz = zzz + (t / 2)

 If (t Mod 10000000) = 0 Then

 DoEvents

 'DoEvents pauses the loop so the operating

 'system can perform queued functions

 Debug.Print t

 End If

 Next

 Debug.Print "CPUTask End Now() = " & Now()

End Sub

 The output in the immediate window will be:

CPUTask Start Now() = 25/12/2012 14:52:07

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

CPUTask End Now() = 25/12/2012 14:52:18

Figure 9.24

DoEvents is a useful function so you can create long loops that don’t hold up the operating

system.

23 | P a g e

Questions

1) True or False

a. A loop is a circular object instantiated by ReDim’ing an object reference

b. For and Step are part of the For statement

c. Next denotes the end of a For code block

d. An infinite loop is magic

e. While used with Step is valid

2) What is the output of the following code

1

2

3

4

5

6

7

Function forLoop2()

 Dim i As Integer

 For i = 1 To 50 Step 10

 Debug.Print “i=” & cstr(i)

 Next i

End Function

3) Change the following code to print hello world ten times using i as your counter

1

2

3

4

5

Function whileLoop1()

 Dim a As Boolean, i As Integer

 While (Not a)

 Debug.Print "Hello World!"

 Wend

End Function

4) Which of the following pieces of code are infinite loops

(a)

While(true)

 Debug.print 1

Wend

(b)

Do while(true)

 Exit Do

Loop

(c)

Do Until(false)

 ‘Exit

Loop

(d)

For I = 1 to 10

 I = I -1

Next

(e)

A=1

Loop While (A=1)

Loop

(f)

A = 3

While(A=0)

A=A-1 : Wend

5) When iterating over a collection, which loop structures would you use?

6) Which of the following are multi-dimensional arrays

a. A = Array(10,5)

b. Dim myString(20) As String

24 | P a g e

c. B(50,50)

d. Dim (9,9)myVar as Integer

7) Which of the following are characteristic of DoEvent

a. Allows non-multi-tasking OS to “multi-task”

b. Schedules a future event

c. Allows Access forms to repaint

d. Used in loops to relinquish CPU resources

e. Reserves memory for an array

8) Write a For loop that prints out the following array

carParts = Array(“Wheel”,”Door”,”Clutch”,”Flywheel”,”Wishbone”,”Sump”)

9) Write a While loop that loops 100 times printing to the immediate window every

second iteration.

10) Write a For Each loop that iterates over the CurrentProject.AllMacros collection and

prints their names to the immediate window.

11) Using the following arrays, complete the questions that follow

aa = array(10,6,20,99)

bb = array(1,2,3,4)

cc = array(aa,bb)

aa(0)= bb(3)= cc(0)(0)= cc(1)(0)= aa(bb(0))=
bb(4)= cc(1)(3)= bb(8-aa(1))= aa(0)+bb(3)= cc(0)(2)=

a. Could the above array be iterated using loops?

b. Which loops would be most suitable and why?

12) Using a Integer array called “IDs” with 10 elements, populate the array with numbers

1 to 10

13) How many “Running!” lines are printed to the immediate window?

1

2

3

4

5

Function runningLoop()

 While (false)

 Debug.print “Running!”

 Wend

End Function

14) When does the following loop exit?

1

2

3

4

5

6

Function exitAtFive()

 Dim a as Integer : a = 100

 While (a>=5)

 a = a - 1

 Wend

End Function

25 | P a g e

15) What is the result of the following:

a. Dim a1(20) : UBound(a1) = ?

b. Dim b(10) : LBound(b10) = ?

c. Dim c As New Collection: c.Add "Hi": c.Add "#12/12/2010#": c.Count = ?

16) Examine the following function newChessboard()

1

2

3

4

5

Function newChessboard()

 Dim chessboard(8), pieces1, pieces2, places, none As String

 pieces1 = Array("rook", "knight", "bishop", "king", _

 "queen", "bishop", "knight", "rook")

 pieces2 = Array("pawn", "pawn", "pawn", "pawn", "pawn", _

 "pawn", "pawn", "pawn")

 none = "empty"

 places = Array(none, none, none, none, none, none, none, none)

 chessboard(0) = pieces1

 chessboard(1) = pieces2

 chessboard(2) = places

 chessboard(3) = places

 chessboard(4) = places

 chessboard(5) = places

 chessboard(6) = pieces2

 chessboard(7) = pieces1

 newChessboard = chessboard

End Function

a. Describe the output of the function

17) What is the difference between chessboard(8,8) and newChessboard in the above

function?

a. What I the purpose of the array pieces1

18) Write a loop that prints out chessboard(7)

a. And, write a loop that prints out column 1 of the chessboard

19) Write a loop that prints only the positions “(x)(y)={content}” of squares that are not

“empty”

hint: you will need to use If, Loops and arrays

20) What happens if we ask what is in element chessboard(9)(2)?

26 | P a g e

Answers

1) True or false

a. False

b. True

c. True

d. False

e. False

2) i=1

i=11

i=21

i=31

i=41

3)

1

2

3

4

5

6

7

Function whileLoop1()

 Dim a As Boolean, i As Integer

 While (Not a)

 Debug.Print "Hello World!"

 i = i + 1: If i = 10 Then a = True

 Wend

End Function

4) True and false

a. True

b. False

c. True

d. True

e. True

f. False

5) For Each

6) True or false

a. True

b. False

c. Could be true if option explicit is not set

d. False

7) True or false

a. True

b. False

c. True

d. True

e. False

8) One of the following

1

2

3

4

5

6

7

For each p in carParts

 Debug.print p

next

--or--

For p = 0 to ubound(carParts)-1

 Debug.print carParts(p)

Next

27 | P a g e

9) As follows

1

2

3

4

 While (t < 100)

 t = t + 1

 If t Mod 2 Then Debug.Print t

 Wend

10)

1

2

3

4

 While (t < 100)

 t = t + 1

 If t Mod 2 Then Debug.Print t

 Wend

11) aa = array(10,6,20,99)

bb = array(1,2,3,4)

cc = array(aa,bb)

aa(0)=10 bb(3)=4 cc(0)(0)=10 cc(1)(0)=6 aa(bb(0))=10
bb(4)=error cc(1)(3)=4 bb(7-aa(1))=2 aa(0)+bb(3)=14 cc(0)(2)=20
a) Yes

b) For loop or for each. For loops clearly show and restrict how many elements will

be iterated in each loop. While and other loops are not restricted and could

execute infinitely.

12) any loop structure that increments a variable and assigns that value to

IDs(variable)=variable

13) none

14) when a is less than 4

15) values

a. 20

b. 0

c. 2

16) An array chessboard (8) with each element containing another array.

chessboard(0) and chessboard(7) are the main pieces

chessboard(1) and chessboard(6) are the pawns

chessboard(2-5) are empty

17) Chessboard(8,8) creates a two dimensional array

newChessboard() returns a one-dimensional array, each dimension having another

one-dimensional array.

28 | P a g e

18)

1

2

3

4

For each sq in chessboard(7)

 Debug.print sq

Next

a)

1

2

3

4

For t=0 to 7

 Debug.print chessboard(t)(1)

Next

19)

1

2

3

4

5

6

7

8

9

chessboard = newChessboard()

For y = 0 To 7

 For x = 0 To 7

 If chessboard(y)(x) <> "empty" Then

 Debug.Print "position(" + CStr(y) + "," + CStr(x) + ")=" + chessboard(y)(x)

 End If

 Next

Next

20) out of bounds error

