

VBA Made Easy

Debugging
06

www.accessallinone.com

1 | P a g e

This guide was prepared for AccessAllInOne.com by:
Robert Austin

This is one of a series of guides pertaining to the use of Microsoft Access.

© AXLSolutions 2012
All rights reserved. No part of this work may be reproduced in any form, or by any means,
without permission in writing.

2 | P a g e

Contents
Debugging .. 3

Break on Unhandled Errors ... 3

Breakpoints .. 5

Debug Control Bar ... 6

Immediate Window .. 7

? and Debug.Print ... 7

: to concatenate commands .. 7

; to concatenate strings ... 7

Call a Procedure .. 8

Immediate Window Scope .. 8

Code Window Pop-ups ... 9

Watches Window.. 10

VBE Editor Options ... 11

Compilation Explained .. 13

Advanced Compilation and ACCDE ... 13

To Create an ACCDE file: ... 14

Why use an ACCDE file?... 16

Multi-Users Environments .. 16

Questions .. 17

Answers ..20

3 | P a g e

Debugging

In VBA, when we write code, it often doesn’t work how we expect it to or we think it is

working fine but need to be sure before handing it over to a client. For this reason we use

debugging tools to enable us analyse our code whilst it is running.

Note: When writing code it is completely normal for it not to work as expected. Very few

programs work 100% error free (if any at all) and our job as coders is to eliminate major

errors and bullet-proof our code by making sure that any unforeseen errors are handled in

some way and not just left to confuse the end user.

Break on Unhandled Errors

Before going any further it is important to make sure the option to break on unhandled

errors is on. We do this by selecting Options from the Tools tab:

Figure 6.1

 Select the General tab of the dialog box.

 Tick “Break On Unhandled Errors” in the “Error Trapping” Option box.

4 | P a g e

Figure 6.2

Ok, now we have done that we need to identify the difference between a handled error and

an unhandled error. We can never fully anticipate all errors that will occur so we need to

have a kind of safety mechanism to ensure that if errors do occur, they are handled

accordingly. When we write code that achieves this, we are handling errors.

In this first example, we have an error because we are trying to divide 5 by 0. This is a

common error that occurs in VBA. The code can be found in the “06_Debugging” module of

the accompanying Access file. Test the code and see what happens. An ugly dialog box

appears and gives us some information which may be useful to a developer but not to an end

user.

1

2

3

4

Sub unhandledError()

Dim i As Integer

i = 5 / 0

End Sub

Figure 6.3

In the second example we have included an error handler. The snippet of code that says On
Error GoTo error_handler tells the IDE that if an error is encountered the code should
immediately jump to the section entitled error_handler: where we have some lines of code
that bring up a much more informative and instructional dialog box (that we created and can
modify to suit our means).

5 | P a g e

1

2

3

4

5

6

7

8

9

10

11

Sub handledError()

On Error GoTo error_handler

 Dim i As Integer

 i = 5 / 0

Exit_Sub:

 Exit Sub

error_handler:

 MsgBox "There has been an error. " & _

 "Please try running the code again or reloading the form."

 Resume Exit_Sub

End Sub

Figure 6.4

Error handling such as this is typical in VBA code and is the mark of a bullet-proofed

application.

Breakpoints

A breakpoint is a marker one places on the code and at which point execution breaks and

stops to allow the debugger to operate. There are many cases when such an activity is really

useful.

Imagine you have a long calculation and you know there’s an error in it but don’t know

where. By clicking on the column where the red dot is displayed below, the row will become

highlighted indicating a breakpoint. Once the breakpoint is reached the code is paused and

the VBA editor will go into debug mode.

Figure 6.5

Debug mode in the VBA editor isn’t much different to normal mode except that the debug

control bar’s controls are enabled and you can see a yellow line indicating the line of code

waiting to be executed. In order to resume executing code from this point, press F5. If you

would like to step through the code one line at a time you can press F8.

Figure 6.6

6 | P a g e

Debug Control Bar

The debug toolbar is your next companion in battle. When this bar is active, it allows you to

step through your program and examine it in great detail.

Figure 6.7

The Play button tells the executive to continue running form the line that is
currently highlighted.

If the debugger isn’t yet engaged you can pause the execution and enter debug
mode immediately.

Stop forces an immediate cessation of execution and the call stack to be cleared.

The hand toggles a breakpoint on current line.

On a line which contains a user-defined function the Step-In follows execution
into the next function or procedure.

Or rather than stepping into the function on can jump over the function, allowing
it to execute as needed, and take up debugging once the sub-method has finished.

Step out tells the debugger to continue executing the rest of the current
procedure until it completes.

Displays the Locals Window which displays all local variables in use and their
values.

Toggles the visibility of the immediate window.

Toggles the Watches Dialog box. This box is navigable allowing you to drill down
into all local variables currently in use and inspect them in minute detail.

Quick Watch creates a quick watch item using the currently selected variable.

Call Stack displays a list of functions and procedures that have lead up to this
point and will be returned to.

Figure 6.8

7 | P a g e

Immediate Window

As mentioned before the immediate window is fantastic for testing code snippets, but it can

also be used as a great debugging tool. Here are a few simple commands:

1

2

3

4

5

Debug.print “Hello World”

Print “Foobarbar”

? “bar foo foo bar bar

Figure 6.9

? and Debug.Print

Although we use these 3 methods to print from the immediate window we must use

Debug.Print when inside the code window.

: to concatenate commands

Another shorthand notation is “:” which allows multiple commands on one line. As the

Immediate Window doesn’t execute commands over several lines – just one line – you can

use “:” to overcome this limitation. So now looping and conditionals structures are available

to you:

1

2

3

4

5

6

7

Debug.print “Hello World”: print “Foobar”: ? “barfoo”

For t=1 to 10: ?t:Next

T=True: if T then ?”It’s true”: else : ?”it’s false :(”

T=False: if T then ?”It’s true”: else : ?”it’s false :(”

Figure 6.10

; to concatenate strings

Just like in the Code Window you can also use”;” to concatenate Strings together rather than

“+”.

Note: You cannot use the “Dim” keyword in the Immediate Window. The good news,

though,is that this is because it is not required; just assign values to variables as required.

1

2

3

4

5

6

‘ this will not work

Dim t As Integer: For t=1 to 10: ?t:Next

‘ this will work

T=0 : For t=1 to 10 : ?t : Next

Figure 6.11

8 | P a g e

Call a Procedure

To execute a procedure you need only type its name. If you want to highlight the fact and

document that you are actually calling a procedure and function you use the word Call before

the method’s name. One note of caution, when trying to call a function, Call does not return

any values and will give an error if you try to capture a function’s return value. Call only calls

a function as if it were a procedure.

1

2

3

4

5

6

7

8

9

10

11

12

13

Public Function testAA() As String

 testAA = “done”

End Function

‘ this will not work

Call testAA()

Call (testAA)

A = call(testAA)

‘ this will work

call testAA

a=testAA()

testAA

Figure 6.12

Immediate Window Scope

Commands you type in the Immediate Window are executed immediately and in scope. If

you are not debugging, the window will operate at Global Scope; if you are debugging, the

window operates at that function or procedure Scope.

And a final comment to make; when working in the Immediate Window any code you write

using variables of the code being debugged will cause the program’s variables to be changed.

This is a highly desirable feature to help resolve bugs.

9 | P a g e

Code Window Pop-ups

In this example we are auto-generating an
error. The line that says Error 9 will
generate:
“Subscript out of range”. But we are using
an error handler to enable us to “trap” the
error.

In this simple procedure “a” has been
assigned the value of 10. At the debugged
statement (the red and yellow line) the code
has halted. Place the curser over any of the
variables in the procedure and the value will
be displayed in a hint. This is very useful
when reading code as it is a quick way to
determine the values of any variables.

In the immediate window below we’ve also
added the statement:
?a which prints 10.

Figure 6.13

Here we have placed a break point on the
line that reads Debug.print “post error”.
The code has halted execution and now we
will use the immediate window to
manipulate the variable “a”.

In the immediate window we’ve assigned the
value 21 to “a” and printed it out to verify
this has happened. Next we placed the
curser over the variable “a” and the IDE tells
us the variable’s value in situ, a=21.

Figure 6.14

10 | P a g e

Watches Window

Figure 6.15

The Quick Watch feature and Watches Window allows us to see a set of variables without

having to place the curser over anything or type anything in the immediate window.

To add a watch to the Watches Window
highlight the variable you want to watch (“a”
in this case) and click the Quick Watch
button or Shift+F9.

Figure 6.16

Above you can see that “a” is now in the Watches Window, displaying its value, type, context

and other details. When you bug out of the procedure “a” will become <Out of Context>.

11 | P a g e

VBE Editor Options

VBA has a concise set of options and tools which you can set to change behaviour of the

editor and debugger. All are useful tools to help make coding easier and quicker for

developers.

To access the Editor Options click on the
Tools menu and select Options…

Figure 6.17

Figure 6.18

 Auto Syntax check – check as you type syntax checker.

 Require Variable Declarations – this adds “Option Explicit” to the top of all
modules and is a good to always have ticked.

12 | P a g e

 Auto List Members
The . dot operator allows you to access
members / properties / fields of an object.

Here DoCmd members are shown. This is a
feature of the IDE and can be done on any
object or class.

Figure 6.19

 Auto indent

Auto indent option forces the Editor to
indent your code which makes
ascertaining the beginning and end of
nested methods easier.

In the image to the right, there is a
For…Next loop and because the inner code
block is indented it is easy to make out
what is being executed and when.

Figure 6.20

 Break On All Errors (General Tab)
This option tells the debugger to break execution and let the programmer see the debugger
and investigate what’s happening on ALL errors (handled or otherwise). If this option is not
checked the debugger will not cut in and the program is left to perform default actions based
on the nature of the error.

 Compile On Demand (General Tab)
Compilation is an operation that converts our VBA into executable code. Compile On
Demand should generally always be on, and will be executed by the IDE or the module
compiled when a function or procedure held within is required.

 Auto-Quick Info (Editor Tab)
Quick information enables the edit to provide you with the signature of a method displaying
its accepted arguments and their data types – including enumeration types.

Figure 6.21

13 | P a g e

The hint below the Update tells you all the arguments this method requires. Both arguments
in this method are optional as they have [] around them. UpdateType is of data type Long
with a default value of 1, Force is of Boolean data type with a default value of False.

 Auto Data Tips (Editor Tab)
Earlier we saw that placing the curser over a variable in debug mode displays a hint. This
option turns that feature on and off.

Compilation Explained

To round off the unit we will look at compilation.

Compilation is the act of converting our human readable code (VBA) into code the computer

understands. It may also be that your code is compiled into an intermediary format often

called object code. Either way, this just illustrates that our programs are actually just a

human understandable representation of what we are telling our computers to do.

Generally you will not notice the compiler as
the settings on the left are set to
automatically compile during execution and
whilst you type.

Figure 6.22

You can explicitly force VBA IDE to compile all modules in the project.

Before you release your Access product to
fellow users, it is always a good idea to
explicitly execute the Compile item in
Debug menu.

Compiling before release also ensures the
VBA code executes as fast as possible.

Figure 6.23

That’s really all you need to know about compilation. For interested readers there is a little

more below about ACCDE files.

Advanced Compilation and ACCDE
While compilation as described above allows your application to execute in a multiuser

environment, it leaves all the form data, report data and VBA code available to be edited by

14 | P a g e

anyone with a full installation of MS Access. You can use the runtime/command-line switch

in a shortcut to reduce the chance of a user stumbling across the designer tools.

Alternatively we can strip out all design information make it impossible for users to edit

forms and modules. If you do this procedure, make sure you keep a backup of the accdb

file; if you lose it you will never get the design information back.

To Create an ACCDE file:

Click on the File tab in the
Ribbon to expose BackStage
view.

Click on Save & Publish.

15 | P a g e

Click on Make ACCDE.

Click on Save As.

A Save As dialog box will pop
up.

You choose where you would
like to save the ACCDE file and
under what name.

Figure 6.24

16 | P a g e

Why use an ACCDE file?

Creating an ACCDE file removes all design code so that Forms may only be opened in Form

View and Modules cannot be debugged. So even if the SHIFT Key entry method is used no

Forms, Reports or Code can be changed.

This is useful for the following situations:

 You don’t want users to change your forms, reports or code.

 It creates a more stable Access Database for multi-user environments.

 You want to protect your intellectual property.

 You want to publish your Access Database.

Multi-Users Environments

From first-hand experience in multi-user environments you are advised to only give end-

users ACCDE or MDE files and split your back- and front-ends. Giving access to the ACCDB

runs the possibility of inadvertent changes to form properties – e.g. when a user applies a

filter to the form – and when saved this very well may corrupt your database.

Corrupt databases can be recovered but on the off-chance it is not possible it is not worth the

risk. You’ll lose a day’s work at least (if not everything) if backups of your file server haven’t

been kept.

17 | P a g e

Questions

1. Which of the following describes a breakpoint?

a. A red dot on the left.

b. A green bar across the highlighted code.

c. A point in the code that interrupts execution.

d. Max number of function called before crashing.

e. A corrupt database.

2. Which of the following describe debugging?

a. Ridding code of errors.

b. Cleaning the mouse.

c. A Honey trap for VBA code.

d. Inspecting run-time code for errors.

e. Command-line interface for IDE functions.

3. What do the following icons mean

4. Explain the uses of the following characters in the Immediate Window

?

:

;

Dim

18 | P a g e

5. What is the result of executing the following code

t=-1 : For t=t to 5 : ?t : Next t

6. When typing the DoCmd object and hitting “.” What may happen?

a. Object members are listed.

b. Quick Info may display.

c. Computer may beep at you.

d. Compiles your VBA code.

e. Resets the IDE’s editor tools.

7. In the immediate window, what can you not do?

a. Use the keyword Dim to instantiate objects.

b. Access scoped variables.

c. Inspect variable values.

d. Execute snippets of code.

8. What is wrong with the following code?

? a= ; a; "oioi"; "."

9. What does the Debug menu item Clear All Breakpoints do?

10. How to use quick watch?

11. Which of the following lines will cause an error?

a. A = myFunc(a)

b. A = myFunc a

c. C = A + myFunc (12)

d. Call myFunc(12)

e. C = myFunc(12)

12. True or False?

a. The debugger will compile and execute your code.

b. The IDE will assist with most syntax problems.

19 | P a g e

c. Option Explicit should be used as little as possible.

d. Debugging Modules involves (by default) a lot of red and yellow lines.

e. Watches window displays the time.

f. The immediate window is always in execution scope.

g. In debug mode placing the curser over a variable displays its value.

13. An ACCDE is a compiled version of an ACCDB file?

14. What’s the difference between an ACCDB and MDB?

15. Breakpoints are activated at run-time?

16. ACCDE files do not have breakpoints? True or False

17. True or False? Using Debug.Print slows down your application.

18. True or False? You should tick the box that says “Break on All Errors” when handing

over the databse to an end user.

19. True or False? Functions can’t be called from the immediate window.

20. True or False? The Debug control bar is always visible and cannot be removed.

20 | P a g e

Answers

1. (a) and (c)

2. (a) and (d)

3.

This button allows the developer to “step over” a function.

This button toggles the visibility of the immediate window.

On a line which contains a user-defined function the Step-In follows execution
into the next function or procedure.

The hand toggles a breakpoint on current line.

Quick Watch creates a quick watch item using the currently selected variable.

4.

?

Prints out a variable or return value of a function.

:

Concatenates commands.

;

Concatenates a string.

Dim

Cannot be used in the immediate window.

5. It prints out -1, 0, 1, 2, 3, 4, 5 in the immediate window.

6. (a)

7. (a)

8. A requires a value - ? a= 1; a; "oioi"; "."

9. It removes all breakpoints from the code in the active module.

10. Highlight a variable you would like to watch click on the quick watch button in the

debug bar.

11. (b)

12. See answers below.

a. False

b. True

c. False

d. False

e. False

f. False

g. True

13. True

14. MDB are legacy files, pre Access 2007.

15. True

16. True

17. True

18. False – This should only be ticked when a developer uses it.

19. False

20. False

