

VBA Made Easy

Functions,

Sub-procedures

and Arguments

05

www.accessallinone.com

1 | P a g e

This guide was prepared for AccessAllInOne.com by:
Robert Austin

This is one of a series of guides pertaining to the use of Microsoft Access.

© AXLSolutions 2012
All rights reserved. No part of this work may be reproduced in any form, or by any means,
without permission in writing.

2 | P a g e

Contents
Functions, Sub Procedures And Arguments .. 3

VBA Language in Context .. 3

What is a Sub-Procedure? .. 3

What is a Function? ... 4

Calling Sub Procedures And Functions From The Immediate Window................................ 4

Calling Sub Procedures from other Sub Procedures .. 6

Calling Functions ... 8

Built-in Functions .. 8

Using the Query Expression Builder to locate functions ... 8

Commonly Used Built-In Functions ... 11

String Functions .. 11

Conversion ... 11

Date and Time Functions ... 12

Is Functions .. 13

DFunctions – Database Functions ... 15

Custom Functions and Sub Procedures ... 16

Anatomy of a Sub Procedure .. 18

Anatomy of a Function ... 19

Declaring Functions and Procedures ...20

Scope ...20

Declarations in a Module and Global Scope (and a little private-cy)20

Declarations in a Form or Report Modules .. 23

Questions .. 24

Answers .. 28

3 | P a g e

Functions, Sub Procedures And Arguments
In this unit you will learn about Functions, Sub Procedures and Arguments.

VBA Language in Context

The core of the English language is its sentences and paragraphs. The sentence describes

some action (verb) that is performed on or by an object (noun), and a paragraph is a set of

sentences communicating some overall desired goal or aim. VBA is not unlike English in this

sense.

VBA’s paragraphs are called Procedures and Functions. Sentences are then the variables,

operations, object methods and assignment statements in the Code Block. All recent

programming languages share this same structure. To continue the analogy, functions and

procedures (the paragraphs) are contained within books called VBA Modules. There are

three types of book, or module:

 Forms and Reports Module (Microsoft Office Access Class Object Modules);

 Standard Modules.

 Class Modules;

When you write your code, it will always be written within a Function…End Function or a

Sub…End Sub statement. VBA is what is known as a functional programming language. That

is, we cannot just write code within a standard module and expect it to run; Access won’t

recognise this and will complain terribly, we must put Sub or Function around it.

What is a Sub-Procedure?

A sub-procedure is a code block that executes a series of actions. In other words, it is code

that does something.

Figure 5.1

In this sub procedure you may notice that all the code is held within the Sub
getPriceIncVAT()
and the End Sub statements. These are the outer limits of the sub procedures and any code
that comes before Sub getPriceIncVAT() and after End Sub do not form part of the sub
procedure

1

2

3

4

5

6

7

8

9

10

11

12

Sub getPriceIncVATSub()

Dim ItemPrice As Double

Dim SalesTax As Double

Dim PriceIncVAT As Double

ItemPrice = InputBox("What is the price of the item?")

SalesTax = InputBox("What is the tax? (20%=0.2)")

PriceIncVAT = ItemPrice + (ItemPrice * SalesTax)

MsgBox ("The price of the item including VAT is: $" & PriceIncVAT)

End Sub

4 | P a g e

What is a Function?

Functions are not dissimilar to sub procedures in that they do something but where they
differ is that they also return a value.

Figure 5.2

In Figure 5.2 we have changed the sub procedure into a function and it is now returning a
value.

Note: Please only take into consideration the structure of the function as we will be
covering the syntax in greater detail later on in this unit.

Calling Sub Procedures And Functions From The Immediate Window

One of the benefits of the immediate window is that we can use it to test sub procedures and
functions.

Figure 5.3

Take a look at Figure 5.3 where we have 2 very simple sub procedures and 1 very simple
function.

In order to call the procedure CallSubFromImmediateWindow using the immediate
window, we merely need to write its name (without the parentheses).

1

2

3

4

5

6

7

8

Function getPriceIncVATFunction(ItemPrice As Double)

Dim SalesTax As Double

Dim PriceIncVAT As Double

SalesTax = 0.2

getPriceIncVATFunction = ItemPrice + (ItemPrice * SalesTax)

End Function

5 | P a g e

Figure 5.4

This will cause a message box to pop it that states “It works!”

We can also add arguments to the immediate window. In the second sub called
CallSubFromImmediateWindowWithArgs we need to pass a value i. We do this by writing
the name of the procedure and then adding the necessary argument to the right.

Note: If there are more than one arguments, separate them with a comma.

Figure 5.5

In Figure 5.5, we call CallSubFromImmediateWindowWithArgs and provide the argument i.
In this case, we pass the value 5 and a message box will pop up with the value 5 in it.
Whatever we change the value of the argument to will be reflected in the value that the
message box displays.

We can also test functions. Remember that functions are essentially the same as sub
procedures with the difference that they return a value.

Figure 5.6

To test a function from the immediate window we use a question mark and then we write the
name of the function. We follow the function with parentheses and any relevant arguments
are placed inside the parentheses. We have done this in Figure 5.6.

6 | P a g e

Figure 5.7

Figure 5.7 shows that if we provide 5 as an argument for this particular function we get a
value returned of 15. Try adding different values as the argument to see what return value
you get.

Calling Sub Procedures from other Sub Procedures

One of the most important features of VBA is the ability to call sub procedures from other

sub procedures. What do we mean? Take a look at this code to find out:

Figure 5.8

In Figure 5.8 we have 4 sub procedures Main, getName, getAge and printDetails. The main
sub procedure we have cleverly called Main and this sub procedure calls all the other sub-
procedures within the module. It first calls getName which has the objective of asking the
user’s name. This value is then assigned to strName which is a module level variable. Next,
getAge is called which involves another input box asking you for your age and again the value
is stored in a module level variable called strAge. Finally printDetails is called which takes
the 2 module level variables and concatenates them in a string which is printed in the
immediate window.

7 | P a g e

In Figure 5.9 below we call the sub Main from the immediate window by writing Main and
pressing the return key and then provide Steve and 25 as the values for the variables.

Note: Breaking code down into manageable chunks and having a main procedure that
calls other procedures (and functions) is an excellent way to code.

Figure 5.9

8 | P a g e

Calling Functions

Figure 5.10 has the same concept (you are asked for your name and age which are printed in
the immediate window) but this time we are using 1 sub procedure (Main) which is calling
functions. As functions return values, it is those that are used as the basis for the
concatenated string at the end.

Figure 5.10

Using functions is another great way to break down your code into manageable chunks. In
the previous example, we wrote custom functions but VBA has plenty of built-in functions all
of its own.

Built-in Functions

VBA has a wide library of built-in functions. Please look through them and experiment with

them. Most coding issues you try to overcome and actions to be fulfilled can be performed

by using these functions, so try not to reinvent the wheel.

Using the Query Expression Builder to locate functions

As there are scores of built-in functions in Access/VBA, wouldn’t it be great if we had an

easily accessible list that listed not only the functions but also their uses? Well, rest assured,

we do (kind of). We can use the expression builder in a query to perform this particular

function (do you like what we did there?)

9 | P a g e

Opening the Expression Builder

In the main Access window
click on the Query Design
button which can be found in
the Queries group of the Create
tab of the Ribbon.

Dismiss the Show Table Dialog
Box.

Click in the Field row in any
column in the field designer
window.

10 | P a g e

Click on the Builder button
which is located in the Query
Setup group of the Design tab
of the Ribbon.

The Expression Builder dialog
box will pop up.

Open the Functions Node (1)
in the Expression Elements
window and a list of all
functions will be displayed.

If you click on one of the
functions in the Expression
Values window (2) you will get
a brief explanation of what is
does (3).

Clicking on the hyperlink text
of the function syntax (4) will
open up a more detailed
explanation of the function in a
browser window.

Figure 5.11

1 2

3

4

11 | P a g e

Commonly Used Built-In Functions

This section will provide you with examples of commonly used built-in functions

String Functions

 Len(s) – returns the length of String s.

 Left(s, n) – returns a substring of s that is n chars long from the left of the string s.

 Right(s, n) – returns a substring of s that is n chars long from the right of the string s.

 Mid(s,nb,ne) – returns a substring of s from characters nb to ne, inclusive.

1

2

3

4

5

Sub testStrings()

 Debug.Print Len("Hello World")

 Debug.Print Left("Hello World", 10)

 Debug.Print Right("Hello World", 7)

 Debug.Print Mid("Hello World", 7, 10)

End Sub

 Output in immediate window:

11

Hello Worl

o World

World

Figure 5.12

Conversion

 CInt(anything) – converts anything into an Integer type (if possible).

 Cdbl(anything) – converts anything into an Double type (if possible).

 Clng(anything) – converts anything into an Long type (if possible).

 CStr(anything) – converts anything into a String.

 CDate(string) – converts a string to a Date type (if possible).

If any of the conversion functions are passed a variable that cannot be parsed – e.g.

CInt(“oioi!”) – a Type Mismatch error occurs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Sub testConversions()

 Dim i As Integer, d As Double, l As Long, s As String

 i = 19

 d = 12.6

 l = 32768

 s = "42.001"

 ' to display the answers provided by the conversion functions we have to

‘CStr() all the number variables or VBA will throw a Type Mismatch error

 ' so just to prove that CStr works we'll do it first

 Debug.Print "First test CStr on all types"

 Debug.Print "CStr(i) = '" + CStr(i) + "'" ' '42'

 Debug.Print "CStr(d) = '" + CStr(d) + "'" ' '42.001'

 Debug.Print "CStr(l) = '" + CStr(l) + "'" ' '42'

 Debug.Print "CStr(s) = '" + CStr(s) + "'" ' '42.001'

 Debug.Print ""

 Debug.Print "Second, CInt"

 Debug.Print "CInt(i) = " + CStr(CInt(i)) ' 19

 Debug.Print "CInt(d) = " + CStr(CInt(d)) ' 13

 Debug.Print "CInt(l) = Overflow Error. Integers are valued <32768"

 Debug.Print "CInt(s) = " + CStr(CInt(s)) ' 42

 Debug.Print ""

 Debug.Print "Third, CDbl"

 Debug.Print "CDbl(i) = " + CStr(CDbl(i))

 Debug.Print "CDbl(d) = " + CStr(CDbl(d))

 Debug.Print "CDbl(l) = " + CStr(CDbl(l))

12 | P a g e

25

26

27

28

29

30

31

32

 Debug.Print "CDbl(s) = " + CStr(CDbl(s))

 Debug.Print ""

 Debug.Print "Fourth, CLng"

 Debug.Print "CLng(i) = " + CStr(CLng(i)) ' 19

 Debug.Print "CLng(d) = " + CStr(CLng(d)) ' 13

 Debug.Print "CLng(l) = " + CStr(CLng(l)) ' 32768

 Debug.Print "CLng(s) = " + CStr(CLng(s)) ' 42

End Sub

 Output in immediate window:

testConversions

First test CStr on all types

CStr(i) = '19'

CStr(d) = '12.6'

CStr(l) = '32768'

CStr(s) = '42.001'

Second, CInt

CInt(i) = 19

CInt(d) = 13

CInt(l) = Overflow Error. Integers are valued <32768

CInt(s) = 42

Third, CDbl

CDbl(i) = 19

CDbl(d) = 12.6

CDbl(l) = 32768

CDbl(s) = 42.001

Fourth, CLng

CLng(i) = 19

CLng(d) = 13

CLng(l) = 32768

CLng(s) = 42

Figure 5.13

Date and Time Functions

Date and time functions are quite complex due to the nature of dates. VBA has a special way

of handling dates by putting # around them; for example dMyDate = #18-Dec-2012#. Here

are some of the functions to help with dates.

 Date () – returns the current date.

 Now() – returns the current date and time.

 DateSerial(year, month, day) – returns a Date object if parameters are valid.

 Year(date) – returns the year of date as an integer.

 Month(month) – returns the month of date as an integer, 1-12.

 Day(Day) – returns the day of date as an integer, 1-31.

 DateDiff(interval, date, date) – date are dates, interval is day, month, year, etc.

 DateAdd(interval, number, date) – add to date intervals multiplied by number

13 | P a g e

Date Intervals

In the above interval refers to one of the following:

Interval Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

Figure 5.14

Note: The Date function returns the current date (as defined by your operating system) so
the results you get from the following example will be different from the results we
obtained.
1

2

3

4

5

6

7

8

9

Sub testDateTime()

 Debug.Print Date

 Debug.Print Now()

 Debug.Print DateSerial(2012, 12, 18)

 Debug.Print Year(Date)

 Debug.Print Month(Date)

 Debug.Print Day(Date)

 Debug.Print DateAdd("d", 421, Date)

 Debug.Print DateDiff("d", Date, #1/1/2020#)

End Sub

 Output in immediate window:

27/12/2012

27/12/2012 22:50:08

18/12/2012

 2012

 12

 27

21/02/2014

 2561

Figure 5.15

Is Functions

When inspecting whether a variable has a value we usually use the equals = operator, but

equals does not work if a variable is null, empty or is nothing. Nor can equals be used to

interrogate the variable for its type. There are special ‘Is’ operators which provide for that

functionality.

 IsDate(anything) – returns true if variable is a date.

 IsArray(anything) – return true if variable is an array.

 IsNull(anything) – returns true if variable is Null.

 IsEmpty(anything) – returns true when type variable is uninitialized.

 IsObject(anything) – returns true when variable is an Object.

 TypeName(anything) – returns a string.

14 | P a g e

IsDate and IsEmpty

1

2

3

4

5

6

7

8

9

10

Sub dateAndEmptyFunctions()

 Dim myDate

 Debug.Print IsDate(myDate)

 Debug.Print IsEmpty(myDate)

 myDate = #12/20/2012#

 Debug.Print IsDate(myDate)

 Debug.Print IsEmpty(myDate)

End Sub

 Output in immediate window:

False

True

True

False

Figure 5.16

Note: We will be covering arrays in a future unit.

IsArray and IsNull

1

2

3

4

5

6

7

8

9

10

11

12

Sub arrayAndNullFunctions()

 Dim myArray As Variant

 myArray = Array("first_name", "surname", "dob", "town", Null)

 Debug.Print IsArray(myArray)

 Debug.Print IsNull(myArray(0))

 Debug.Print IsNull(myArray(1))

 Debug.Print IsNull(myArray(2))

 Debug.Print IsNull(myArray(3))

 Debug.Print IsNull(myArray(4))

End Sub

 Output in immediate window:

True

False

False

False

False

True

Figure 5.17

15 | P a g e

IsObject and TypeName

1

2

3

4

5

6

7

8

9

10

11

12

13

Sub objectAndTypeNameFunctions()

 Dim varA, varB As Object, varC As Date, varD As DAO.Recordset

 Debug.Print

 Debug.Print "isObject(varA) = "; CStr(IsObject(varA)); Tab; "TypeName(varA) =

"; TypeName(varA)

 Debug.Print "isObject(varB) = "; CStr(IsObject(varB)); Tab; "TypeName(varB) =

"; TypeName(varB)

 Debug.Print "isObject(varC) = "; CStr(IsObject(varC)); Tab; "TypeName(varC) =

"; TypeName(varC)

 Debug.Print "isObject(varD) = "; CStr(IsObject(varD)); Tab; "TypeName(varD) =

"; TypeName(varD)

End Sub

 Output in immediate window:

isObject(varA) = False TypeName(varA) = Empty

isObject(varB) = True TypeName(varB) = Nothing

isObject(varC) = False TypeName(varC) = Date

isObject(varD) = True TypeName(varD) = Nothing

Figure 5.18

DFunctions – Database Functions

Sometimes it is necessary to retrieve certain data from the database - e.g. a manufacturer’s

name – or perform a quick count on records. Rather than having to create objects and write

SQL statements VBA offers a couple of smart and concise routines to obtain what you need

without all the object/SQL hassle.

All DFunctions have the same signature expression, table[, criteria] which is similar in

structure to SQL itself.

 DLookup (expression, table, [criteria]) – Looks up a value in a table or query.

 DCount (expression, table, [criteria]) – Counts the records in a table or query.

 DSum(expression, table, [criteria]) – Returns the sum of a set of records in a range.

 DMax (expression, table, [criteria]) – Retrieves the largest value from a range.

 Dmin(expression, table, [criteria]) – Retrieves the smallest value from a range.

 DAvg(expression, table, [criteria]) – Returns the average set of numeric values

from a range.

 DFirst (expression, table, [criteria]) – Returns the first value from a range.

 DLast (expression, table, [criteria]) - Returns the last value from a range.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Sub DFunctions()

 'These D-Functions will be using data from the teachers table

 Debug.Print DLookup("[LastName]", "tblTeachers", "[FirstName]='Anna'")

 'We are looking up a value in the [LastName] field of tblTeachers.

 Debug.Print DCount("*", "tblTeachers")

 'The asterix (*) means that we are counting

 ' all the records in the table

 Debug.Print DSum("[TotalPaid]", "tblTeachers")

 'Adds up all of the values from [TotalPaid]

16 | P a g e

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

 Debug.Print DMax("[RatePerHour]", "tblTeachers")

 'Returns the largest value from [RatePerHour]

 Debug.Print DMin("[RatePerHour]", "tblTeachers")

 'Returns the smallest value from [RatePerHour]

 Debug.Print DFirst("[LastName]", "tblTeachers",

"[ZIPPostal]='98052'")

 'Returns the [LastName] of the first record where

[ZIPPostal]='98052'

 Debug.Print DLast("[LastName]", "tblTeachers",

"[ZIPPostal]='98052'")

 'Returns the [LastName] of the last record where

[ZIPPostal]='98052'

End Sub

 Output in immediate window:

Gratacos Solsona
9
2980.4
13.2
11.5
Axen
Wacker

Figure 5.19

Custom Functions and Sub Procedures

Having looked at built-in functions we are now going to create our own custom function.

Let’s write a function that calculates the age of a student given the date of birth. The details

we know are as follows:

 A returned value is needed, so we must use a function.

 The value returned will be somebody’s age, so we should return an Integer.

 The function needs to know the student’s DOB, so a Date parameter is needed.

 We also need a relevant function name; let’s call it calculateAge.

The signature of the function then is:

 Function calculateAge(DOB As Date) As Integer

End Function

We need a variable to store the age and to store today’s date:

 Dim iAge as Integer

 Dim dToday as Date

Figure 5.20

Now we need to know the difference between DOB and today’s date in years. VBA has a

function for that, DateDiff. Let’s set dToday to today’s date and use DateDiff to give us the

age in years.

17 | P a g e

 dToday = Date()

 iAge = DateDiff(“yyyy”, DOB, dToday) ‘ yyyy interval date

Figure 5.21

Finally, we also need to return iAge to the calling method by doing the following:

 calculateAge = iAge

Figure 5.22

The whole function now looks like this:

1

2

3

4

5

6

7

Function calculateAge(DOB As Date) As Integer

 Dim iAge As Integer

 Dim dToday As Date

 dToday = Date

 iAge = DateDiff("yyyy", DOB, dToday) ' yyyy interval date

 calculateAge = iAge

End Function

Figure 5.23

In the immediate window we call the function with a known anniversary date, e.g. today’s

date minus 1 year:

 Output in immediate window:

Print calculateAge (#19/12/2011#)

1

Figure 5.24

Let’s try with another known date, your own age:

 Output in immediate window:

? calculateAge (#15/11/1978#)

34

Figure 5.25

Note: The Date function returns the current date (as defined by your operating system) so
the results you get from the following example will be different from the results we
obtained.

So, we know how to use sub procedures and functions. Let’s take a closer look at the syntax

of each one.

18 | P a g e

Anatomy of a Sub Procedure

In VBA the Sub keyword denotes a procedure. Procedures are designed to perform some

action.

The syntax of a procedure is:

Sub nameOfSub (arguments | optional arguments As Datatype[=defaultValue])

 [Code Block]

End Sub

nameOfSub – name of the sub procedure.

Arguments – are a list of values and types that are collected and used within the sub

procedure.

Optional arguments As Datatype[=defaultValue] – an argument may be optional and if it is

then you may provide a default value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

‘ Declarations of Procedures–syntax highlighting to aid understanding

‘ put this section in the module window

Sub DoNothing() ‘ basic procedure

 Msgbox “Do Nothing ”

End Sub

Sub DoNothing2(name as String) ‘ one argument provided

 Msgbox “the name is ” + name

End Sub

Sub DoNothin3(optional name as String) ‘ one optional argument

 Msgbox “The name is ” + name

End Sub

‘ one optional argument which defaults to Julia

Sub DoNothing4(optional name as String = “Julia”)

 Msgbox “The name is ” + name

End Sub

Sub DoNothing5(name as String, age as Integer) ‘ two arguments provided

 Msgbox “the name is ” + name + “ with age “ + CStr(age)

End Sub

 ‘ put this section into the immediate window

DoNothing ‘ Simple call

DoNothing2 “Julia” ‘ Julia displayed

DoNothing3 ‘ optional name left out, blank appears

DoNothing4 ‘ optional name left out but will default to Julia

DoNothing5 “Julia”, 32 ‘ two arguments

Figure 5.26

19 | P a g e

Anatomy of a Function

In VBA a Function is a Procedure that returns a value. Functions accept data through

arguments, they perform operations internally just like a procedure, but finish with a value

which may be returned by the function.

Function nameOfFunction (arguments | optional arguments As

Datatype[=defaultValue]) _

 As returnDataType

 [Code Block]

 [nameOfFunction = expression]

End Function

nameOfFunction – is the name of the function.

Arguments – are a list of values and types that are collected and used within the function.

optional [arguments] [=defaultValue]] – an argument may be optional and if it is then you

may provide a default value.

returnDataType – If stated, this is the value returned by the function, its data type.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

32

‘ Declarations of functions –syntax highlighting to aid understanding

‘ put this section in the module window

Function returnName1() ‘ basic procedure

 returnName1 = “returnName1 Called”

End Function

Function returnName2(name as String) as String ‘ return name

 returnName2 = name

End Function

Function returnName3(optional name as String) ‘ return name or Shaun

 If name=”” Then returnName3=”Julia” else returnName3=name

End Function

‘ one optional argument which defaults to Julia

Function returnName4(optional name as String = “Julia”)

 returnName4 = name

End Function

Function returnName5(name as String, age as Integer) ‘ two arguments

 returnName5 = “the name is ” + name + “ with age “ + CStr(age)

End Function

‘ put this section into the immediate window

Debug.Print returnName1()

Debug.Print returnName2(“Robert”)

Debug.Print returnName3()

Debug.Print returnName3(“Robert”)

Debug.Print returnName4()

Debug.Print returnName5(“Robert”, 34)

Figure 5.27

20 | P a g e

Declaring Functions and Procedures

Above we’ve read about what the differences are between functions and procedures

Scope

As we have seen, it is possible to call functions and sub procedures from other functions and

sub procedures. But you can restrict which sub procedures and functions can be called. This

is known as the scope of a function or sub procedure and is dependent on the location in

which it is written and also the modifiers you put before the function or sub procedure name.

Possible modifiers are:

 Private - eg. Private Sub txtName_Click()

 Public - eg. Public Function getCustomerName() As string

 Nothing - eg Function isLeapYear() As Boolean

For all modules, Private stops anything seeing the private function or sub procedure except

for other functions or sub procedures in the same module.

Putting Public before a method in a Standard Module, or putting nothing at all means that

the method is available anywhere in the application, its GLOBAL! The reason for this is that

Standard Modules are in global context.

Declarations in a Module and Global Scope (and a little private-cy)

In the example below we have a sub procedure and a function.

Figure 5.28

You can execute this function and sub procedure by entering their names directly into the

immediate window one after the other:

21 | P a g e

DoNothing

doSomething

debug.print doSomething()

-You will notice that DoNothing

displays a dialog box

-At line 2 doSomething() appears to

do nothing

-At line 3 printing the output of

doSomething() reveals the current

time

Figure 5.29

In fact, you can execute this function and sub procedure from anywhere in your application.

For example, navigate to the Module FromAnywhere and call CallFromHere from the

immediate window.

22 | P a g e

Figure 5.30

DoNothing

doSomething

debug.print doSomething()

-You will notice that DoNothing

displays a dialog box

-At line 2 doSomething() appears to do

nothing

-At line 3 printing the output of

doSomething() reveals the current time

Figure 5.31

To demonstrate scoping with the Private modifier, add Private to the sub procedure

DoNothing1 and the function doSomething1 and rerun the immediate window tests.

23 | P a g e

Figure 5.32

.Now DoNothing does nothing, except give you the error below! Private in a module means

no VBA code outside the Module can see this sub procedure or function.

Figure 5.33

Declarations in a Form or Report Modules

In the Events unit you may have seen that all event subs created by the IDE are declared with

the Private modifier. Private ensures that it is not possible for code outside the Form to call

its own code. This is particularly important for Forms as executing any of the event

procedures could cause a modification of data! That is why all Event Procedures are Private.

In Form and Report modules, only put that code which is unique and specific to that form or

report. You may include Public sub procedures if you need to give access to some

functionality unavailable by conventional mechanisms.

Forms and reports do not need to be open for public sub procedures to be called and

variables set or actions performed.

24 | P a g e

Questions

1. Why would you want to use a function instead of a sub procedure?

2. Which one of the following signatures is valid for a function called

appointmentDate?
a. Function appointmentDate(customerID As Integer) As Date

b. Function Date appointmentDate(Integer customerID)

c. Sub appointmentDate(customerID As Integer) As Date

d. Date appointmentDate(Integer customerID)

3. The signatures below have been extracted from a Standard Module.

Which are available in Global scope?

a. Private Function getNewID() As Integer

b. Public sub updateCustomerName(id as Integer, name as String)

c. Function IsClass(text As String) As Boolean

d. Sub updateModificationDate(recorded As Long)

e. Private Sub GetNextRecord()

4. Match each DFunction on the left with its description on the right

a. DSum

b. DCount

c. DLookup

d. DMin

a. Returns the value of a field in a table
for which ID=20.

b. Ordered by invoice number the
function will return the smallest
numerical value.

c. Returns a value equal to the number
of records in a table.

d. For a table of invoices this function
will return the total value of all
invoices

5. Using the expression builder find the mathematical functions which do the following:

a. Calculates the square of a number.

b. Returns today’s date.

c. Returns the time now.

d. Returns the difference between two dates.

e. Converts a Boolean value to a string.

f. Returns true when an object reference is empty.

g. Returns false when a recordset field doesn’t have the value of null.

h. Gives back the aggregate sum value of a table’s tax field.

i. Converts a string into a date.

6. Which function returns the string value of a variable type?

25 | P a g e

7. Function giveMeTime(name As String) As Date

a. What is the return data type?

b. Is this a procedure or a function?

c. With time As Date can time=giveMeTime(“Mike”)?

d. Which of the following will give a compiler error

i. A = giveMeTime “Mike”

ii. giveMeTime “Mike”

8. Match the following String functions on the left with their description on the right

a. Mid(s, a, b)

b. Len(s)

c. Left(s, a)

d. Right(s, a)

e. InStr(1, s, c)

a. Gives the ending of a string from
character position A to the end

b. Returns a substring of a string

c. From the beginning returns a

smaller string from position n0
with length a

d. Searches for one string inside
another

e. Give a count of the characters in a
string

9. What does Now() provide you with that Date() does not?

10. What is the return value of Month(#29-February-2012#)

11. Write the following function called textAddNumber:

a. Parameters of myText and myNumber.

b. Returns a string equal to the text of myText with myNumber appended to the

end.

c. Such that “Your score is” and 13 returns “Your score is 13”.

12. Write the following procedure called calculate:

a. Parameters of a(integer), b(string), c(string)

b. Allocate a to houseNo, b to teleNum, c to Surname

c. Concatenate c+b+a to d

d. Write debug,print d

13. Using DLookup, write an expression that retrieves the [surname] of a [pupil] with

[id] of 1192.

26 | P a g e

14. Using DCount write an expression that counts the number of [students] with a

[telephone] number beginning with “555”.

15. Match the following date intervals with the description

Interval Description

d Weekday

h Year

m Month

n Day

s Second

w Minute

yyyy Hour

16. True or False (; a semi colon denotes a new line)?

a. IsDate(#05/11/2012#)

b. IsDate(#01:36:01#)

c. Dim var As Application; IsObject(var)

d. Dim foobar; IsEmpty(foobar)

e. Dim foo as String; TypeName(foo) =”String”

f. Dim bar as Object; TypeName(bar) = “Empty”

17. Write a function that, given an array (myArray) and an integer (i), returns the value

of the myArray element i

18. In which module would you place the following code? Answer a) Standard Module, b)

Form Module or c) Class Module.

a. A globally available function?

b. A procedure that can only be used by a form?

c. A procedure that operates on a form but is available outside the form?

d. A function that is specific to a class?

e. A class function that can only be used by the same class?

f. A procedure available to the whole project that minimises all windows and

opens the form MainMenu?

19. On a new form you place three buttons named btnButton1, btnButton2, btnButton3.

 When btnButton1 is clicked a message is displayed.

 When btnButton2 is double-clicked the form closes.

27 | P a g e

 When btnButton3 is clicked nothing happens.

 What has buttons 1 and 2 that button 3 doesn’t?

20. Read the following code

Sub DoNothing4(optional name as String = “Julia”)

 Msgbox “Morning Dave. My name is ” + name

End Sub

a. What does optional mean?

b. What is the default value of name?

c. What is the name of the method?

d. When the method is execute with the following values, what is the result?

DoNothing4 (“Hal 9000”)

28 | P a g e

Answers

1. If you want a returned value

2. a

3. b, c, d

4. a-d, b-c, c-a, d-b

5. a

a. sqr

b. date()

c. now()

d. datediff

e. CStr

f. IsEmpty

g. IsNull

h. DSum

i. CDate

6. TypeName

7.

a. Date

b. Function

c. Yes

d. i

8. a-b, b-e, c-c, d-a, e-d

9. Now() has a time element, Date() has only date

10. 2

11. Function

a. Function textAddNumber (myText As String, myNumber as Long) As String

b. textAddNumber = myTest + “ “ + CStr(myNumber)

a. End Function

b.

c. Function textAddNumber (myText As String, myNumber as Long) As String

d. textAddNumber = myTest; “ “; CStr(myNumber)

c. End Function

12. Sub

e. Sub calculate(a As Integer, b String, c String)

f. Dim houseNo As Integer

g. Dim teleNum As String

h. Dim Surname As String

i. Dim d As String

j. D = CStr(houseNo) + telNum + Surname

k. Debug.print d

l. End Sub

13. eg. DLookup(“[surname],”[pupils]”,”id=1192”

14. eg. DCount(“*”,”[students]”, “left([telephone],3)=””555”””)

15. see page on dates for answers

16. All are true :)

17. Function

a. Function getElement(myArray as Variant, i as Integer)

b. getElement = myArray(i)

29 | P a g e

c. End Function

18. Multi choice

a. A

b. B

c. B

d. C

e. C

f. A

19. Button 3 doesn’t have an event procedure, specifically no onClick or onDblClick

20. Multiple answers

a. Optional means name doesn’t have to be passed

b. Julia

c. Donothing

d. “Morning Dave. My name is Hal 9000”

