

Access VBA Made Easy

Data Types,

Variables,

Constants,

Operators
03

www.accessallinone.com

1 | P a g e

This guide was prepared for AccessAllInOne.com by:
Robert Austin

This is one of a series of guides pertaining to the use of Microsoft Access.

© AXLSolutions 2012
All rights reserved. No part of this work may be reproduced in any form, or by any means,
without permission in writing.

2 | P a g e

Contents
Data Types, Variables, Constants and Operators .. 3

Variables ... 3

Declaring variables ... 3

Dim ... 4

Restrictions on naming variables ... 4

Naming Conventions .. 5

Constants .. 5

Variable Scope .. 6

Arithmetic Operators ... 7

Common Errors .. 8

Not using the Option Explicit Statement ... 8

Data Types .. 8

Data types and definition ... 9

Boolean - (Yes/No) ... 9

Integer .. 10

Long .. 10

Single .. 10

Double ... 11

Currency .. 11

Date .. 11

String .. 12

Variant .. 13

Questions .. 14

Answers .. 19

3 | P a g e

Data Types, Variables, Constants and Operators

Variables

When writing code in V.B.A. we often need to do calculations based on values that can

change. An example would be working out the area of a circle. Take a look at the code below

to see how we have used variables to for values that we do not know when the code starts

running.

Figure 3.1

Declaring variables

Variable declaration is the act of telling VBA the name of your variables before you actually

use them. You should always declare the variables you will use as soon as logically

possible, which usually means at the top of your function or sub procedure. You should also

state the data type of your variables. In the above code we are telling V.B.A. that we would

like to declare a variable called Radius which has a data type double.

It is a good idea and standard practice to declare variables and data types

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Public Sub AreaOfCircle()

Dim d As Double

Dim radius As Double

Dim measure As String

 'This is where we declare our variables

 'They are variables because when the sub-procedure runs,

 'we do not know their values

Const PI = 3.14159265359

 'We have declared pi as a constant and not a variable

 'because its value never changes...

radius = InputBox("Please enter a radius")

 'We obtain the value of radius using an input box

measure = InputBox("Please enter cms or inches")

 'We obtain the value of measure using an input box

d = PI * (radius * radius)

 'We work out the area of the circle and assign it to d

MsgBox "The area of your circle is " & Round(d, 4) & " " & measure

End Sub

4 | P a g e

Dim

To declare a variable in VBA we use the keyword Dim (which stands for dimension).

1

2

Dim Age As Integer ‘ VBA makes space for Age, of type Integer

Dim Name as string ‘ VBA makes space for Name, of type String

Figure 3.2

The name of the variable must follow Dim and the type of the variable should follow with the

keywords “As” and then the type.

Note: If, at the top of the module, you include the “Option Explicit” statement, you must let

V.B.A. know the data type that you will be assigning the variable (e.g. as Integer, as Double,

as String). If, however, you omit “Option Explicit” at the top of the module, you don’t have to

let V.B.A. know what type of data you are going to use. V.B.A. will assume that you are using

the data type “Variant” and proceed accordingly. Always use “Option Explicit”!!!

Restrictions on naming variables

The names we can use for variables must conform to a small set of rules:

1. They must begin with a letter or an underscore (_).

2. They must end with a number or letter.

3. They may contain any sequence of numbers or letters or underscores (_).

4. They may contain upper or lower case letters.

5. They must not be one of VBA’s keywords.

The compiler will automatically tell you if a variable is illegally named and will not execute

unless variables are valid.

Figure 3.3

1

2

3

4

5

6

7

8

9

10

11

12

13

Dim a as String ‘ is a valid variable name

Dim b_ as String ‘ is a valid variable name

Dim _b as String ‘ variable names must start with a letter

Dim 2b as String ‘ variable names must start with a letter

Dim c1 as String ‘ is a valid variable name

Dim d12 as String ‘ is a valid variable name

Dim e_e1 as String ‘ is a valid variable name

Dim f! as String ‘ punctuation not allowed in variable names

Dim g as String ‘ is a valid variable name

Dim dim as String ‘ is not valid – “Dim” is a keyword

Dim string as String ‘ is not valid – “String” is a keyword

Dim number as String ‘ number is not a keyword so this is valid

5 | P a g e

Naming Conventions

A naming convention is a way of naming variables which enables us to easily understand

both the data type of the variable and the reason for its existence. There are a couple of rules

to follow when naming variables.

 Use meaningful variable names – make your variables mean something. Zzxd isn’t

meaningful, but fileNotFound means something to a human, even though it doesn’t

affect the computer or VBA in any way.

 Use camelCase for variables – that is, for every word in your variable name make the

first letter of the first word lower-case, and the remaining letters upper-case.

thisIsCamelCase.

 Use UPPER_CASE for constants (see below)– when you declare a constant, the name

of that constant is usually capitalised. This means nothing to the compiler but means

everything to you (we look at constants later on in this unit).

Another convention is to use up to 3 small letters before the variable name to indicate the

data type.

 iMyNumber would be of type Integer

 dblMyOtherNumber would be of type Double

 strText would be of type String

Constants

Constants differ from variables in that their value does not change after they have been

declared. This is how we code with constants:

1

2

3

4

Dim a as String ‘ is a regular variable declaration

Const B = 1 ‘ declare the constant B with a value of 1

Const DATABASE_NAME = “accdb_firsttime”

 ‘ new constant called DATABASE_NAME

Figure 3.4

You may have noticed that constants are not given a data type; this is because VBA makes

some intuitive assumptions about the data. For example, any text surrounded by double

quotation marks is a String; any number without a decimal point will fit into a Long; any

decimal number will fit into a Double, and any True or False values fit into a Boolean value

(True or False). This is the same logic VBA will take if you were not to define your data type

on a variable using Dim.

6 | P a g e

Variable Scope

When you declare a variable in your program you also implicitly determine which parts of

your code can access it. In VBA there are three types of declaration that affect the scope of a

variable; Procedure, Module and Public.

Figure 3.5

Procedure Level Scope

Procedure level scope means that a variable is recognised only within that procedure. In the

above code, the variable PriceIncVAT has a procedure level scope and is only recognised

within the sub-procedure getPriceIncVAT. To achieve this we use the dim or static

keywords and declare the variable inside the sub-procedure we wish to recognise it.

Module Level Scope

Module level scope means that a variable can be recognised by any sub procedures within the

module. ItemPrice has a module level scope and this is reflected in the fact that the variable

is recognised in getItemPrice and getPriceIncVAT. To give a variable a module scope we

declare it at the top of the module and use the private keyword (private means it is only

available to sub-procedures within the module it is declared in).

Public Level Scope (also known as Global Scope)

Public level scope means that a variable is recognised by every sub-procedure and function

within the active application. (In the above code SalesTax has a public level scope.) This can

be useful for variables that should be consistent throughout the application (e.g. SalesTax

shouldn’t be 20% in one sub procedure and 15% in another). It is convention to create a

module with a name like “Globals” where it is possible to keep all of the public variables in

one place where they can easily be maintained and modified as required.

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22

 'Global Declaration

Public SalesTax As Double

 'Module Level Declaration

Private ItemPrice As Double

Sub getPriceIncVAT()

 Dim PriceIncVAT As Double

 Call getSalesTax

 Call getItemPrice

 PriceIncVAT = ItemPrice + (ItemPrice * SalesTax)

 MsgBox ("The price of the item including VAT is: $" & PriceIncVAT)

End Sub

Sub getSalesTax()

 SalesTax = InputBox("What is the tax? (20%=0.2)")

End Sub

Sub getItemPrice()

 ItemPrice = InputBox("What is the price of the item?")

End Sub

7 | P a g e

Arithmetic Operators

Like all languages VBA has a set of operators for working on Integer (whole) and floating-

point (decimal) numbers. The table below demonstrates all 9 of them. VBA also offers many

other operations built in as commands in the language.

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Sub ArithmeticOperators()

Dim a1 As Integer

Dim b1 As Integer

Dim c1 As Integer

Dim a2 As Double

Dim b2 As Double

Dim c2 As Double

' + addition

a1 = 10

b1 = 20

c1 = a1 + b2 ' c1 = 30

' - subtract

a2 = 9.8

b2 = 5.3

c2 = a2 - b2 ' c2 = 4.5

' * multiplication

a1 = 9

b1 = 8

c1 = a1 * b1 ' c1 = 72

' / division floating-point

a2 = 120.5

b2 = 8.12

c2 = a2 / b2 ' c2 = 14.8399014778325

' \ division integers

a1 = 256

b1 = 8

c1 = a1 \ b1 ' c1 = 32

' mod - returns the remainder of a division

a1 = 100 Mod 3 ' a1 = 1

a2 = 100 Mod 3.1 ' a2 = 1, mod only returns whole numbers

' ^ powers

a1 = 2 ^ 2 ' a1 = 4

b1 = 3 ^ 3 ^ 3 ' b1 = 19683

End Sub

Figure 3.6

8 | P a g e

Common Errors

Not using the Option Explicit Statement

The option explicit statement is useful because it ensures that we must declare our variables.

(As mentioned, VBA assumes the data type variant for all non-declared variables when

option explicit isn’t used).

The Option Explicit statement should go at the top of the application before any code has

been written.

Data Types

When working with data in V.B.A. it is important that we don’t try to add 15 to the word

“Hello” or try to divide 07/02/12 by 53 as V.B.A. will not be able to make sense of these

calculations (and, frankly, neither can we). In order to ensure the integrity of the data that

we make calculations upon we are required to use data types.

Data types are essentially restrictions that are placed on data that are manipulated in the

V.B.A. environment. These restrictions allow us to tell V.B.A. that we are creating a variable

and that variable will only accept a specific type of data. An example of this would be the

integer data type. Integer is just a fancy way of saying whole number and if we declare a data

type as an integer it will only accept a whole number.

Figure 3.7

Here we have created a variable called HouseNumber and informed V.B.A. that we wish this

variable to be of type integer. This means that we will only be able to assign a whole number

to it. Ergo…

Figure 3.8

…would be a perfectly acceptable assignment statement whilst…

Figure 3.9

…would not.

1

Dim HouseNumber as integer ‘ This variable will only accept integers

Dim HouseNumber as integer

HouseNumber = 5

Dim HouseNumber as integer

HouseNumber=”Car”

9 | P a g e

There is also another reason for the existence of data types. Different data types take up

different amounts of memory depending on how complex they are. An example of this would

be the integer data type vs the double data type.

We can use the double data type to store non-integer numbers. So, for example, whereas we

couldn’t accurately store the number 2.531 as an integer (it would round it up to 3) we could

use the double data type for this value. The double data type, though, uses twice as much

memory as the integer data type (8 bytes vs. 4 bytes) and, although not a big drain on the

memory, with large applications that use many variables, it can and will affect performance if

the correct data are not assigned the correct data type. So, if you need to store integers, use

the integer data type; if you need to store text strings, use the string data type. And so on.

Data types and definition

Firstly a word on VBA variable names; a variable may be named anything you wish as long as

it conforms to VBA’s naming rules. Variable names must start with a letter, may contain

number characters or underscores (_) but that’s it! Punctuation marks are not allowed.

Also unlike other languages VBA is case-insensitive! This is important to understand and

is demonstrated below.

Finally, there are some keywords that cannot be used as variable names.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Dim a as String ‘ a valid variable name

Dim b_ as String ‘ a valid variable name

Dim _b as String ‘ variable names must start with a letter

Dim 2b as String ‘ variable names must start with a letter

Dim c1 as String ‘ a valid variable name

Dim d12 as String ‘ a valid variable name

Dim e_e1 as String ‘ a valid variable name

Dim f! as String ‘ punctuation not allowed in variable names

Dim g as String ‘ a valid variable name

Dim G as String ‘ an invalid variable name. VBA is case-

 ‘ insensitive, variables also cannot be

 ‘ declared more than once in a code block

Dim aVariableName as String ‘ a valid variable name

Dim a_Variable_Name as String ‘ a valid variable name

Dim HELLOWORLD as String ‘ a valid variable name

Dim dim as String ‘ variable name is invalid as Dim is a keyword

Figure 3.10

Boolean - (Yes/No)

A variable of type Boolean is the simplest possible data type available in VBA. It can only be

set to 0 or -1. These are often thought of as states and correspond to Access’s Yes/No fields.

In VBA you can assign a Boolean variable to True (-1) or False (0) or the numbers indicated

in the brackets.

Notice we used capitalised words for True and False, which is because they are VBA

keywords and you cannot name a variable a Keyword.

10 | P a g e

Notice I used capitalised words for True and False, which is because they are VBA keywords

and you cannot call a variable a Keyword.

1

2

3

4

5

6

Sub trueOrFalse()

 Dim foo As Boolean

 Dim bar As Boolean

 foo = True ' foo holds the value True

 bar = False ' bar holds the value False

End Sub

Figure 3.11

Integer

At the beginning of the post we said that we have to tell the computer what type of data to

expect before we can work on it. An Integer is another number data type, but its value must

be between -32,768 and 32,767, and it must be a whole number, that is to say, it mustn’t

contain decimal places. If you or your users try to save a decimal value (eg 2.5) to an integer

variable, VBA will round the decimal value up or down to fit into an Integer data-type.

1

2

3

4

5

6

7

8

9

Sub IntegerDataType()

 Dim foo As Integer

 Dim bar As Integer

 Dim oof As Integer

 foo = 12345 ' foo is assigned the value 12,345

 bar = 2.5 ' bar is assigned the value 3 as VBA rounds it up

 bar = 2.4 ' bar is assigned the value 3 as VBA rounds it down

 foo = 32768 ' causes an overflow error as 32,768 is too big

End Sub

Figure 3.12

Long

Long is another number type and works just like Integer except it can hold a much larger

range; Any number between -2,147,483,648 and +2,147,483,647.

1

2

3

4

Sub LongDataType()

 Dim foo As Long

 foo = 74345 ' foo is a variable assigned the value 74,345

End Sub

Figure 3.13

Single

Single is the smaller of the two “floating point” data types. Singles can represent any decimal

number between -3.4028235E+38 through 1.401298E-45 for negative numbers and

1.401298E-45 through 3.4028235E+38 for positive numbers. Put more simply, the single

data type has a decimal point in it.

1

2

3

4

5

6

7

Sub SingleDataType()

 Dim foo As Single

 Dim bar As Single

 foo = 1.1 ' foo keeps the .1 decimal part

 bar = -20.2 ' bar also keep the decimal part

 foo = foo * bar ' foo equals -22.2200008392334

End Sub

Figure 3.14

11 | P a g e

Double

This is a “floating point” number as well and range in value from -

1.79769313486231570E+308 through -4.94065645841246544E-324 for negative values and

from 4.94065645841246544E-324 through 1.79769313486231570E+308 for positive values.

1

2

3

4

5

6

7

Sub DoubleDataType()

 Dim foo As Double

 Dim bar As Double

 foo = 1.1 ' foo keeps the .1 decimal part

 bar = -20.2 ' bar also keep the decimal part

 foo = foo * bar ' foo equals -22.2200008392334

End Sub

Figure 3.15

Currency

This data-type is a third “floating-point data” type in disguise. It’s a Single which has been

engineered to represent behaviours typical of currencies. In particular it rounds off numbers

to four decimal places. See the Figure below:

1

2

3

4

5

6

7

8

9

Sub CurrencyDataType()

 Dim bar As Single

 Dim foo As Currency

 bar = 1.1234567 ' this is the Single

 foo = bar ' add the Single to the Currency

 MsgBox bar ' bar contains 1.1234567

 MsgBox foo ' foo contains 1.1235. Notice that the 4th digit

 ' has been rounded up to 5

End Sub

Figure 3.16

Date

The Date data type is used to perform operations that involve dates AND times. In VBA there

are several functions that operate on date variables which perform date and time calculations.

It is important to know that date and time operations can be quite complicated and to help

ease your burden you can use VBA’s DateTime object which encapsulates a lot of the

difficulty of working with dates and time and can make them a little less of a headache to

deal with. Date data types are the most complicated of all the data types to work with.

Here are a few operations we can do with date data types.

1

2

3

4

5

6

7

8

9

10

11

12

Sub DateDataTypes()

 Dim bar As Date

 Dim foo As Date

 bar = #11/15/1978# ' bar set to this date but has no time

 foo = #12/10/2012 11:37:00 PM# ' foo is set to this date and time

 bar = #1:00:09 AM# ' bar is 1 hour and 9 seconds

 foo = #9:00:00 PM# ' foo is 9PM

 foo = foo + bar ' foo is now 22:00:09

 MsgBox foo

 foo = foo - bar ' foo is back to 9PM

 MsgBox foo

End Sub

Figure 3.17

12 | P a g e

String

A String is any set of characters that are surrounded by double-quotation marks. For example

“dog” is a String that contains three characters. Strings are very important to us as they can

contain human language, and in fact contain almost any data we want, even numbers and

punctuation marks. Strings are very versatile and you will use them extensively in your code.

Often when you ask your users for information you will first store their input in a String

before actually using the data provided; in this way Strings are often thought of as a safe data

type.

Below are some Figures of Strings in action.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Sub StringDataTypes()

 Dim bar As String

 Dim foo As String

 Dim foobar As String

 bar = "Hello" ' bar now contains "Hello"

 foo = "world!" ' foo contains "world!"

 foobar = bar & " " & foo ' foobar now contains "Hello world!"

 ' notice that foobar has a +" "+ this means a SPACE character has been

 ' inserted into the String, without it foobar would contain

"Helloworld!"

 foobar = bar + " " + foo ' This Figure also shows that you can add

 ' Strings together (but you cannot subtract!)

 foo = "H" & "E" & "L" & "P" ' foo now contains "HELP"

 bar = foo & foo ' bar now contains "HELPHELP"

End Sub

Figure 3.18

As stated above, when you collect input from a user you will usually collect it into a String.

But be careful not to confuse String with Number data types. For example:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Sub Confusion()

 Dim bar, foo As String

 Dim foobar As String

 foo = "12.5" ' user inputs "12.5"

 bar = "6.3" ' user inputs "6.3"

 foobar = foo * bar ' we multiple 12.5 and 6.3

 Debug.Print foobar ' print the result - 0

 ' It's ZERO!

 ' Remember foo and bar are STRING data types,

 'so multiplying foo and bar as above is like

 'saying "aaa" * "bbb" = 11 ? It doesn't make sense.

 'But we collect data in a String because a String

 'can accept all user input, even if they 12 put a

 'punctuation mark in there.

 foo = "12.5.2" ' user made a mistake

 bar = "ifvgj212m" ' cat walks across the keyboard

 ' When collecting user input the data held in a String

 'can be tested for accuracy and correctness before we

 'load it into an Integer. If the user has not entered

13 | P a g e

23

24

25

 'data correctly we ignore or display a useful message

 'like "Error"...

End Sub

Figure 3.19

Variant

A variant is a special type which can contain any of the data types mentioned above (along

with some others).

When a value is assigned to the variant data type the variable mutates into the type of the data

assigned to it, and in some cases VBA can “detect” the type of data being passed and

automatically assign a “correct” data type. This is useful for collecting data from users and

also for writing procedures and functions for which you want to be able to call with a variable

of any type.

1

2

3

4

5

6

7

8

9

10

11

Sub VariantDataType()

 Dim bar As Variant

 Dim foo As Variant

 Dim foobar As Variant

 bar = 1 ' bar is now an Integer

 foo = "oi!" ' foo is now a String

 foobar = bar + 1.1 ' foobar is now a Double with the value of 2.1

 MsgBox TypeName(bar) ' Integer

 MsgBox TypeName(foo) ' String

 MsgBox TypeName(foobar) ' Double

End Sub

Figure 3.20

14 | P a g e

Questions

With Option explicit set in all your modules answer the following questions.

Write each answer in a function called myAnswer_ and end if it your question number. For

example:

1

2

3

4

5

6

7

8

Option Compare Database

Option Explicit ‘ make sure this line is in your code

Function myAnswer_1()

 ‘ your code goes here

End Function

Figure 3.21

1. Write code that will declare the following types and set them all to a value

a. boolean

b. integer

c. long

d. date

e. single

f. double

g. currency

h. string

i. date

j. a Variant String

2. write code that performs the following:

a. declares a constant with the value “Hello”.

b. declares another constant called YEAR with the value 2012.

c. declare a variable called myName and assign it your name.

d. declare a second variable called myMesage and join the constant in (a) with

the variable in (c).

e. now add to myMessage the text “. The year is”.

f. now add to myMessage the constant YEAR (hint: function cstr()).

g. finally add the following:

 debug.print myMessage

3. What is the output of the following sub?

1

2

3

4

5

6

7

8

Option Compare Database

Option Explicit ‘ make sure this line is in your code

Sub myAnswer_3()

 iVar1 = 10

 iVar2 = “value of iVar1=” + iVar1

 msgbox iVar2

15 | P a g e

End Sub

Figure 3.22

4. What will the next code sequence do and why?

1

2

3

4

5

6

7

8

Option Compare Database

Option Explicit ‘ make sure this line is in your code

Sub myAnswer_3()

 Dim iAnswer as Integer

 iAnswer = “42”

End Sub

Figure 3.23

5. What is the difference between the following?

a. A1 = “42.2”

b. A2 = 42.2

c. And what would be the result of A1 * A2?

6. You start your code with the following instruction. Why does it not compile?

1

2

3

4

5

6

7

8

Option Compare Database

Option Explicit ‘ make sure this line is in your code

Sub myAnswer_3()

 Dim function as String

 function = “Hello World!”

 msgbox function

End Sub

Figure 3.24

7. Rewrite the following in camelCase

a. Calculate the age of a tree

b. Tape reader file position

c. User input

d. File pointer

e. Input

f. sMyMessage

8. rewrite the following as constants

a. semaphore stop

b. semaphore start

c. semaphore paused

d. file open

e. end of file

f. carriage return and line feed

g. new line

16 | P a g e

9. In a new function write code to do the following:

a. Define a global constant called database name and give it the value

“mysqldb_website1”

b. Define another global variable with a meaningful name to hold an IP address,

eg 127.0.0.1

c. In local scope, declare a variable named sDBDetails adding the value of the

constants from (a) and (b) making sure to add a space between them

d. Add the following code and execute your code from the immediate window

i. Msgbox sDBDetails

10. In a new function perform the following mathematical expressions by first assigning

the numbers to letters and then saving the result into z, for example:

a. 12 + 16, would be

i. Dim a, b, z as integer

ii. a=12

iii. b=16

iv. z=a+b

v. debug.print z

b. 100+1+20+2

c. 76 * 89

d. (-50 * 3 * -1) / 10

e. 10 mod 3

f. 2 to the power of 2 to the power of 2

g. 2.5 * 7.6, make sure to preserve the decimal number

h. Assign to an integer the value 2.7 . What is the integer’s value?

i. Concatenate the following Strings with addition spaces between

i. “Winston, you are drunk! ”

ii. “Yes madam, and you are ugly!”

iii. “But in the morning, I shall be sober”

j. What is the square of 27 to the nearest whole number

11. What is displayed in the pop-up message box?

1

2

3

4

5

6

7

8

Option Compare Database

Option Explicit ‘ make sure this line is in your code

Sub myAnswer_11()

 Dim s as String

 s = “I” + “ like “ + “Chinese food!”

 s = s + “ The wai-ters never are rude.”

 msgbox s

End Sub

Figure 3.25

12. What must you do to make the following code work?

17 | P a g e

1

2

3

4

5

6

7

8

Option Compare Database

‘Option Explicit ‘ make sure this line is in your code

Sub myAnswer_3()

 Dim d as Date

 d = 12 Dec 2012

 msgbox d

End Sub

Figure 3.26

13. In a new function assign the following dates to variables

a. 11 November 1918

b. 3 December 1992

c. 18 October 1871

d. 10 30 PM

e. 12 – 12 – 2012 00:21

f. 1969, July, 20th

14. Declare three variant variables, set their values to a person’s name, any integer value

and any floating-point number, respectively.

15. Write code to answer the following expressions:

a. 20-True

b. True+ True+ True-False

c. (7656 mod 7) / 3

d. 12 + 66 / 11

e. #12-dec-2012# + #01/01/01#

16. Explain the differences between a Long number and a floating point number.

17. Explain why “10:26 PM” and #10:26 PM# are not the same?

18. If you are asking the user for their birth date, which data type would you / could you

temporarily store their answer for further checking?

19. True or false:

a. 20-20 = true?

b. True and true = false?

c. False or true = true?

20. Which of the following are valid variable names

a. aVariable

b. aFunction

18 | P a g e

c. end

d. while

e. STATE_HOLD

f. STATE OVER

g. File1

h. outputFile_10

i. input-file2

j. $helloWorld

k. 9LivesACatHas

l. todayisyesterday

m. Tomorrow NeverComes

19 | P a g e

Answers

1. If written as a statement in a function (1 mark)

If all given different names (1 mark)

Otherwise 1 mark for each of the following

a. Dim a As Boolean /cr/lf/ a = true or false or -1 or 0

b. Dim a As Integer

c. Dim a As Long

d. Dim a As Date

e. Dim a As Single

f. Dim a As Double

g. Dim a As Currency

h. Dim a As String

i. Dim a As Date

j. Dim a As Variant

2. 1 mark for each line

a. Dim CONSTANT_NAME = “Hello “ ‘ there’s a space at the end

b. Dim YEAR = 2012

c. Dim myName as String

i. myName = “pupil’s name”

d. Dim myMessage as String

i. myMessage = CONSTANT_NAME + myName

e. myMessage = myMessage + “. The year is “

f. myMessage = myMessage + CStr(YEAR)

g. debug.print myMessage

3. No output as this subroutine does not compile

4. 1 mark for stating 42, +1 mark VBA automatically converts “42” into Integer type

5. 1 mark for each

a. The String “42.2” is added to A1

b. The Double 42.2 is added to A2

c. Type mismatch error

d. Cannot multiply string by integer

6. Function is a keyword

7. 1 mark for each

a. calculateTheAgeOfATree

b. TapeReaderFilePosition

c. UserInput

d. FilePointer

e. Input

f. sMyMessage

8. 1 mark for each

1. SEMAPHORE_STOP

2. SEMAPHORE_START

3. SEMAPHORE_PAUSED

4. FILE_OPEN

5. END_OF_FILE

6. CARRIAGE_RETURN_AND_LINE_FEED

7. NEW_LINE

9. 1 mark for each

20 | P a g e

a. Const DATABASE_NAME = “mysqldb_website1”

b. Dim IP – IP may be anything as long as its meaningful and camelCase

i. In function – IP=”127.0.0.1”

c. In function

i. sDBDetails = DATABASE_NAME + “ “ + (b variable)

d. Msgbox sDBDetails

e. Everything in a function

10. 1 mark for each. They should all follow the same basic format given in (a)

8. Value is 3, rounding

9. “Winston, you are drunk! ” + “Yes madam, and you are ugly!” + “But in the

morning, I shall be sober”

10. Trick question, “nearest whole number”

10.1.1. Dim a, z as Integer

10.1.2. a = 27

10.1.3. z = a*a

11. 1 mark

a. “I like Chinese food! The wai-ters never are rude.”

12. 1 mark,

a. Line 6 needs #’s: d = #12 Dec 2012#

13. 1 mark for each

a. All should have #’s around them EXCEPT f, which needs to be rewritten

without the “th”

14. 1 mark for each

a. Dim [variable name] as Variant / or Dim name

b. Followed by respective values

15. 1 mark for putting all into a single function

1 mark for each expression

a. 21

b. -2

c. 1.66666666666667

d. 18

e. 15/12/2113 – yes, that’s the answer; VBA doesn’t make sense here

16. 1 mark for each

a. An integer holds whole numbers

b. An floating-point number holds decimals / numbers and fractions

c. An integer holds less data than a floating-point number / or vice-versa

d. Integers are calculated in the CPU

e. Floating-point numbers are calculated in the FPU / ALU

17. 1 mark – the first is a string, second a date

18. 1 mark – String

19. 1 mark for each

a. False

b. False

c. true

20. 1 mark for each

a. aVariable - valid

b. aFunction - valid

c. end – invalid keyword

21 | P a g e

d. while – invalid, keyword

e. STATE_HOLD - valid

f. STATE OVER – invalid, no spaces allowed

g. File1 - valid

h. outputFile_10 - valid

i. input-file2 – invalid, means input subtract file2, input is also a keyword

j. $helloWorld – invalid, variables must start with a letter

k. 9LivesACatHas - valid, variables must start with a letter

l. todayisyesterday – valid, but should be camelCase

m. Tomorrow NeverComes – invalid, nospaced in strings

