
 

 

  

VBA Made Easy 

The VBA 
Editor 
01 

www.accessallinone.com 



1 | P a g e  
 

This guide was prepared for AccessAllInOne.com by: 
Robert Austin 
 
This is one of a series of guides pertaining to the use of Microsoft Access. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© AXLSolutions 2012 
All rights reserved. No part of this work may be reproduced in any form, or by any means, 
without permission in writing. 



2 | P a g e  
 

Contents 
Introduction ........................................................................................................................... 3 

The VBA Editor through the Ribbon .................................................................................. 4 

VBA Editor through the Form Designer ............................................................................. 4 

VBA Editor through the Form Designer Properties Window ............................................ 5 

VBA Code not Working - Activating VBA Code .................................................................. 5 

The VBA Editor Explained ..................................................................................................... 6 

Code Window...................................................................................................................... 6 

Project Explorer Tree ......................................................................................................... 7 

Properties Window ............................................................................................................. 8 

Immediate Window ............................................................................................................ 8 

Watch Window ................................................................................................................... 9 

How to select different Forms and Reports (from project explorer) ..................................... 9 

How to select different Modules .......................................................................................... 10 

How to Rename Modules ...................................................................................................... 11 

Basic Tools for Writing Code ............................................................................................... 12 

Line Continuation Character ............................................................................................ 12 

Indenting Code ................................................................................................................. 13 

Editor Format to Adjust Colours ...................................................................................... 13 

Naming Conventions ........................................................................................................ 14 

Select Object Dropdown and Procedures Dropdown ....................................................... 14 

Procedural View and Full Module View ........................................................................... 15 

DoCmd Syntax and Arguments Explained .......................................................................... 16 

How to Convert a Standalone Macro ................................................................................... 18 

How to Convert a Form’s Embedded Macros ...................................................................... 19 

When to use Macros and VBA .............................................................................................. 19 

Questions .............................................................................................................................. 21 

Answers ................................................................................................................................ 25 

 

  



3 | P a g e  
 

Introduction 

The VBA Editor is what we use to enter VBA code for forms, reports, custom functions and 

more.  In fact, all Microsoft Office applications (Word, Powerpoint, Excel, Outlook) use the 

same VBA Editor, so although we are learning to program with Access you will also be able to 

transfer ALL your skills and knowledge and even automate between applications. 

Note: In this unit you will be seeing many examples of code in order to demonstrate some 
of the features of the VBA Editor. You are not expected to understand everything and some 
of it may even seem particularly complicated. But rest assured! We will be covering 
everything in detail throughout this series. 
 
The first part of the unit will involve getting to grips with the VBA editor and understanding 

the functions of the various windows 

 

Figure 1.1 

Figure 1.1 is the VBA Editor with three areas highlighted; the Project Explorer, Code Window 

and Immediate Window.  This is what is known as an Integrated Development Environment, 

which means everything you need to write programs and code are all in this one window. 

 

 

  

Code Window 

Enter VBA code here 

Immediate Window 

Used for debugging and testing 

Project 

Explorer 

 

Manage all 

modules in 

your 

application 



4 | P a g e  
 

There are a couple ways to open the editor, all of which are quite natural once you learn 

them. 

The VBA Editor through the Ribbon 

From the ribbon select Create tab and to the far right is the Macro drop down; select Module.  

Now you carry out the same sequence of commands and open the VBA Editor. 

  

Figure 1.2 

VBA Editor through the Form Designer 

When in the form designer you can click the VBA Editor Button under Tools to bring up the 

IDE. 

 
Figure 1.3  



5 | P a g e  
 

VBA Editor through the Form Designer Properties Window 

Or, if you open the property 
window (F4) and click the 
Events tab, any of the ellipses 
(…) will open the VBA editor. 
The form must be in design 
view, however. 
 
We suggest you do this as an 
exercise now.  It will probably 
be the most common way you 
open the VBA editor. 

 
Figure 1.4 

VBA Code not Working - Activating VBA Code 

If you ever see this dialog: 

 

Figure 1.5 

It is because you need to activate this: 
 

 
Figure 1.6 

Navigate back to Access front end. 
Click on Options… and tick the Enable Content Checkbox. Done. 
 

 

 

  



6 | P a g e  
 

Note: This is a feature of Access 2007/2010/2013 which disables all VBA code until 
explicitly allowed to function.  You can tell Access not to display this error but you need to 
set up a “Trusted Location”, which is basically a nominated area where you can place 
programs that you know to be safe.   

The VBA Editor Explained 

There are five main areas of the editor that you need to know about.  Here are four: 

 

Figure 1.7 

Code Window 

The Code Window is where all your VBA code will be written. It has syntax highlighting, 

which means keywords in VBA, - such as Function, CStr, Return and others - will all appear 

in one colour, numbers in another colour and punctuation, comments and strings in yet 

another colour. It looks more appealing and makes reading lines of code much easier. 

Another feature of the 
editor is called Code 
Completion.  This is a 
useful feature; when you 
type in commands, the 
editor will display possible 
values which it believes you 
may need.  For example if 
you type Dim a As Str_ 
this ---------> 
will happen. 
 

 
Figure 1.8 

  

Code Window 

Immediate Window 

 

Project 

Explorer 

 

Properties 

Window 



7 | P a g e  
 

Project Explorer Tree 

 

The project explorer shows you all 
the modules available in your 
database and any add-ins or 
libraries you’ve included. 
 
Modules are kept in three areas: 
 
* Microsoft Office Access Class 
Objects 
 
* Standard Modules 
 
* Class Modules 
 
Select a form module and double 
click it to see any sub procedures 
or functions it may contain. 

 
Figure 1.9 

Microsoft Office Access Class Objects 

These are VBA modules that are owned by (or children of) Forms and Reports. Their name 

will always be prefixed with “Form_” or “Report_”.  In these modules you will put all the 

event code that makes your forms and reports perform essential actions – like opening and 

closing. Unlike Standard Modules, code in these modules is not normally available outside 

the form, they are private. 

Standard Modules 

Standard modules contain code which may be accessed by any of the module types.  In 

Standard Modules code will go that doesn’t belong in forms or reports; for example a library 

of business rules or constants and types which are used by Forms and Reports.  By default, 

anything written here is available anywhere else in the project – this is known as global 

scope. 

Class Modules 

Each Class Module contains code that revolves around a Class, which is a type of data-type or 

object. By default, anything written here is available elsewhere in the project.  



8 | P a g e  
 

Properties Window 

The properties window is available 
in two places; the first is in the 
Form Design window docked to the 
right. The second is usually bottom 
left in the VBA IDE.  If it’s not there 
you can bring it up by pressing F4 
or using the view menu. 

 

 

Figure 1.10 

Immediate Window 

The immediate window is located at the bottom of the screen and is the big blank window 

that says immediate in the title.   

Using this window, you can test code snippets, test out your functions directly rather than 

through a form’s button, and also debug your code. 

Here is a small introduction. Try typing print now() and see what date and time come up. 

Then try Print InputBox(“what’s your name?”) 

 

Figure 1.11 



9 | P a g e  
 

Watch Window 

 

Figure 1.12 

It is a little premature to bring in the Watch 
Window but you will be using it soon enough 
so just take note. 
 
The Watch Window is used in debugging to 
watch and keep an eye on the variables in 
your code.  You can also set a trap, so if one 
of your variables becomes a particular value, 
you can trigger a break which will cause your 
program to stop running so you can inspect 
its state. More on this topic in the next unit.  

 

How to select different Forms and Reports (from project explorer) 

 

In the Project Explorer the items contained 
within folders are all Modules. 
 
Here we have 4 Form modules and 1 
Standard module. 
 
If you select and double click a form, the VBA 
module code will be displayed. 
 
 



10 | P a g e  
 

 
Ultimately, all forms will have a module of 
their own because forms look pretty but do 
little without VBA code. 
 
You can explore this now by opening a form 
that doesn’t have a module and giving it one.  
There are a few ways to do that but here’s 
the most straightforward. 
 

 Open a form in design view. 

 Click on a control, like a button. 

 In the Properties window click on the 
Events tab. 

 Click the Ellipsis of the On Click 
event. 

 Access will now automatically create 
a new module  with the name 
Form_myForm! 

 

 
Figure 1.13 

How to select different Modules 

Modules can be seen in two places, in the Access IDE and the VBA Editor IDE.   
 
If you want to add new modules use the instructions shown previous. 
 

Access IDE 

 
 

VBA Editor IDE 

 
Figure 1.14 

  



11 | P a g e  
 

How to Rename Modules 

Unlike other objects in Access renaming modules is easy, even when they are open.   
 

 
 
Select Module and hit F2 
 
Or  
 
Select the module in the VBA IDE and 
change the  property (Name) 

 
 

Figure 1.15 
  



12 | P a g e  
 

Basic Tools for Writing Code 

The VBA Editor incorporates a number of useful features which help you whilst you are 
developing, testing and in production (some of which we have already touched on).  Here 
we’ll take a closer look at a few code writing features of the VBA editor. 

Line Continuation Character 

When we write code, we are often required to create string expressions that are wider than 

the page itself! Although the entire string is on one line, it makes it more difficult to code as 

you constantly have to use the horizontal scroll bar to read exactly what is written. 

 

Figure 1.16 

The smart people at Microsoft came up with a simple plan; the line continuation character, 

or space and underscore for short. We use this with an ampersand (&) to make our code 

easier to read. 

 

Figure 1.17 

  



13 | P a g e  
 

Indenting Code 

Another key assistant to reading our code is the indentation.  Indentation gives us a clear 

indication of code blocks.  Indentation is implicit, so typing in a Public Function Name() and 

pressing the enter key will add the End Function and indent your code by two or four spaces 

or a tab.  This is standard practice across all programming languages. 

 
 

As you can see, it’s easy to see which bits of 
code are associated with one another. 
 
 

Figure 1.18 

Editor Format to Adjust Colours 

The above example also neatly brings us to syntax highlighting. All keywords in VBA are dark 

blue by standard and anything we write is in a black font (except comments which are 

green).  Syntax highlighting serves to use our sense of colour to add meaning to the code. 

You can change the colours too!  Follow the steps below: Click on the Tools drop down menu, 

select Options… tab over to Editor Format and change as needed.  Working under poor 

lighting conditions makes the default black on white very uncomfortable, so perhaps a 

blackened theme would be more suitable. 

 

 
Figure 1.19 

 



14 | P a g e  
 

Naming Conventions 

A naming convention is a way of naming variables and objects which your developer group 

uses to make your code easier to understand.  In Figure 1.19, Function showMeIndentation() 

is in “camelCase “.  Here are some additional naming convention details: 

 Use meaningful variable names – make your variables mean something. Zzxd isn’t 

meaningful, but fileNotFound has a semantic meaning for humans (even though it 

doesn’t affect the computer or VBA in any way). 

 Use camelCase for variables and functions – that is, for every word in your variable 

name make the first letter upper-case, except the first letter of the first word. 

thisIsCamelCase()  

 Use CamelCase for classes, and types – capitalise your enumerations, user-defined 

types, class name, but leave functions and variables in camelCase. 

 Use UPPER_CASE for constants – when you declare a constant the name of that 

constant is usually capitalised.  This means nothing to the compiler but means 

everything to you. 

Amongst VBA developers, a typical naming convention is to start all variables with lower-

case letters indicating the variable type (in lower case): 

 iMyNumber would be of type Integer 

 dblMyOtherNumber would be of type Double 

 sText would be of type String 

With form and report controls a three letter prefix is very common also: 

 txtMyTextBox 

 cboMyComboBox 

 lblLabel 

The real point of a naming convention, however, is to make your code more accessible to 

others by imposing on you and your colleagues a consistent way of writing code.  Feel free 

within your departments or projects to use whatever naming convention you like, but the key 

is to be consistent.   

If you are working in a large group of developers consider the following: 

 keep a module which bears your name and contains the functions for which you are 

responsible  

 prefix all your functions and subroutines with your initials – the idea here being that 

your procedures and function do not clash with other developers 

Select Object Dropdown and Procedures Dropdown 

Hidden in plain view are two drop down menus just above the Code Editor Window.  The 

drop down menu on the left is used to select and even indicate which control your cursor is 

currently in and the one on the right lists all available events for that object. 

 



15 | P a g e  
 

 
Figure 1.20 

 
 

 
Figure 1.21 

 

Procedural View and Full Module View 

Another useful feature is the ability to switch between module and procedure view in the 
code window. Module view is what we normally see but if you have lots of procedures and 
functions and would like to only view the one you are working on, click the button on the left 
in Figure 1.22.  All the other code will magically disappear! 
 



16 | P a g e  
 

 
Figure 1.22 

 

DoCmd Syntax and Arguments Explained 

 
One of the most versatile objects in Access VBA is DoCmd.  This one object gives you the 
programmer control over how your application operates, issues orders and gives you access 
to features that are otherwise confined to the GUI. 
 
For example: on a form you have a button with the caption “Close”. Clicking it does nothing, 
because we haven’t added code. So, open a form, add a button control, tab over to Events and 
click OnClick. Now enter the following code into the procedure: 
 
 
 DoCmd.Close ‘ closes the presently active window 

 

DoCmd.Close acForm, Me.Name   ‘ Closes any windows with the  

     ‘ Name of Me.Name 

 

Figure 1.23 
 
DoCmd has some other useful functions listened below. 
 
  

DoCmd.OpenForm “name” ‘ does just that 
DoCmd.MoveNext ‘ advances the form’s recordset cursor by one 
DoCmd.FindFirst ‘ finds first record in database – may have been given search parameters 
DoCmd.FindNext 
DoCmd.Maximise 



17 | P a g e  
 

DoCmd.Minimise 
DoCmd.RunCommand ‘ this one method has hundreds of commands relating to the GUI 
DoCmd.Close acForm, Me.Name  ‘ closes any windows with the Name of Me.Name 
DoCmd.RunSQL ‘ excellent for quickly executing an action query when Recordset setup would 
take too long 
 

Figure 1.24 

  



18 | P a g e  
 

How to Convert a Standalone Macro 

A Macro is an object that includes a list of instructions, and these instructions translate to 

VBA code.  Rather than writing your code in VBA you could, and probably have already, put 

together a few Macros to close forms, open forms, email data, navigate records, etc. 

Open a Macro in design view 
using the Navigation Pane. 

 
Click on Convert Macros to 
Visual Basic in the Tools group 
of the design tab of the ribbon.  

 
Click on convert. 

 



19 | P a g e  
 

When the conversion has 
finished, a new Standard 
Module is created with all the 
code for the macro contained 
within. 
 
Just like Macros, the code in 
the Converted Macro module is 
available elsewhere in your 
project. 

 
Figure 1.25 

How to Convert a Form’s Embedded Macros 

Embedded Macros are children of their parent form.  You will tell an embedded macro from 

an event procedure or normal macro because the Property Sheet of the Form Events tab give 

you [Embedded Macro]. 

Open the form in Design view 
(it won’t work in Layout view). 
 

 
Click on Convert Form’s 
Macros to Visual Basic. 

 
Figure 1.26 

When to use Macros and VBA 

Macros are objects in the Access IDE that perform many application functions without 

needing to resort to code in VBA.  VBA on the other hand does everything a macro can do 

and a whole lot more.  Whether you choose to use a Macro or VBA will be down to your 



20 | P a g e  
 

preference and familiarity with VBA or macros.  In this series, we are learning about VBA so 

we will exalt its merits over macros. But for many simple tasks macros are just fine.  



21 | P a g e  
 

Questions 

1. Examine the following code.  Will it do as the user expects? If not why not? 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

 

Sub Message() 

 

Dim strMessage As String 

 

strMessage = "What is your name?" 

     

    MsgBox_ 

    strMessage ,_ 

    vbQuestion ,_ 

    "Name" 

End Sub 

 

 

2. Do the following and answer the questions below. 

Create a new form called “Ex_2_Form1”. 

Add a combo box, a textbox and a label. 

a. What is the third event in the properties window for combo box? 

b. On the label what is the third event property called? 

c. Does the textbox have a caption property? 

d. Select the Detail part of the form, click on Other. What is the name of the 

object? 

e. Select the form, open Other in property tab.  What does “Cycle” mean? 

 

3. True or false … 

a. Macros are VBA code? 

b. The Form Editor allows you to view and edit VBA code? 

c. The Property Sheet in Form View is the same as the Properties window in 

VBA IDE? 

d. IDE means Individual Data Execution? 

e. Macros have fewer commands than VBA code? 

f. The Immediate window allows code snippets to be tested and executed? 

g. A Class Module is a VBA symbol of elitism over other languages? 

h. The Watch window lets you watch the values of variables? 

 

4. A module window is open, you have edited some code.  You want to change the 

module’s name. How do you do this? (hint: there are two ways). 

 

5. Indenting code is a form of what? 

a. Syntactic sugar. 

b. Readability aid. 



22 | P a g e  
 

c. Banging out code 

 

6. Which desert animal features predominantly in variable naming conventions? 

 

7. For the following prefixes what is the most likely variable or object type? 

a. txt 

b. i 

c. cmb 

d. lbl 

e. lng 

f. s 

g. frm 

h. qry 

i. mcr 

j. C 

 

8. What must you do to convert a macro into a VBA function or procedure? 

 

9. Which of the following are methods or variables that belong to the DoCmd object?  

a. Close 

b. RunSQL 

c. MimicForm 

d. Open 

e. SetWarnings 

f. Crash 

g. Beep 

h. RunSavedImportExport 

i. LockNavigationPane 

j. OpenHeadUpDisplay 

k. FindNextRecord 

 

10. True or False? Code completion is a … 

a. …type of artificial intelligence. 

b. …VBA IDE feature. 

c. …developer assistant. 

d. …programming race. 

 

11. Go to the Project Window and add two new Modules.  What are their default names? 

 



23 | P a g e  
 

12. You are testing out some programming features and decide to use the Immediate 

Window to test your functions.  What is wrong with the following code? 

 

a. Debug.Print ( newFunctionTest 1 ) 

b. Print “This May “; “ be my last chance “ +_ “to get this right” 

c. Dim ab As String 

d. Ab = Array(“a”, 3) 

print Ab(2) 

 

13. Why might the Project explorer window not have a form’s module? 

 

14. Open a form in design view and click back into the Navigation Pane Why can’t you 

change the form’s name? 

 

15. The Line Continuation Character is a what? 

a. An actor. 

b. An overstatement. 

c. A space followed by an underscore. 

d. A VBA bloodline. 

 

16. Procedural View or Full Module View? Which allows an overview of the code in the 

VBA IDE? 

 

17. Embedded Macros are not available in the Navigation Pane. Why? 

 

18. Why are Microsoft Office Access Class Objects Modules not visible in the Navigation 

Pane? 

 

19. By default functions and procedures in a Standard Module are… 

a. Private 

b. Public 

c. Protected 

d. static 

 

20. True or False? It is only possible to convert stand-alone macros in VBA. 

  



24 | P a g e  
 

 

 

  



25 | P a g e  
 

Answers 

1. MsgBox doesn’t request a user’s input 

The line continuation characters are next to the commas, no whitespace 

2. a) After Update, b) mouse down, c) detail, d) Detail,  

e) how the form reacts when one is in the last field and tabs once more 

3. True or false 

a. False 

b. False 

c. True 

d. False 

e. False 

f. True 

g. False 

h. True 

4. a) right click on module in project windows and rename 

b) f2 the module in the navigation panel 

5. (b) 

6. A camel 

7. Multiple answers 

a. Textbox 

b. Integer 

c. Combobox 

d. Label 

e. Long 

f. String 

g. Form 

h. Query 

i. Macro 

j. Class 

8. Click Convert Form’s Macros to Visual Basic 

9. True or false 

a. True 

b. True 

c. False 

d. False 

e. True 

f. False 

g. True 

h. True 

i. True 

j. False 

k. False 

10. (b) and (c) 

11. Module 1 and Module 2 or a similar consecutive numeration 

12.  

a. Print is not a function 

b. +_, _ should not be there 

c. Dim is not allowed in the immediate window 



26 | P a g e  
 

d. Ab(2) is out of bounds, valid values would be 0 or 1 

13. Because a form has no module yet. 

14. Because the form is open. Forms must be closed to rename. 

15. (c) 

16. Full Module View. 

17. Because they are embedded into a form or report, their parent is the form. 

18. Because they are children of their parent form. 

19. Public 

20. False 


