

Access VBA Made Easy

Access VBA

Fundamental

s
Level 2

www.AccessAllInOne.com

This guide was prepared for AccessAllInOne.com by:
Robert Austin

This is one of a series of guides pertaining to the use of Microsoft Access.

© AXLSolutions 2012
All rights reserved. No part of this work may be reproduced in any form, or by any means,
without permission in writing.

Contents
03 - Data Types, Variables, Constants and Operators ... 4

Learning Objectives.. 4

Variables ... 4

Declaring variables ... 4

Dim ... 5

Note .. 5

Restrictions on naming variables ... 5

Naming Conventions .. 6

Constants .. 6

Variable Scope .. 7

Arithmetic Operators ... 8

Common Errors .. 9

Not using the Option Explicit Statement ... 9

Data Types .. 9

Data types and definition ... 10

Boolean - (Yes/No) ... 10

Integer ... 11

Long ... 11

Single ... 11

Double ... 11

Currency ... 12

Date ... 12

String .. 12

Variant .. 14

Exercises .. Error! Bookmark not defined.

Answers .. 39

04 - Events ...20

Form and Report Events ..20

Related Objects ..20

How to create an event in the VBA editor ..20

Forms, Controls and their events ...20

Mouse Events ... 22

OnClick ... 22

OnDblClick ... 24

OnGotFocus and OnLostFocus... 25

OnMouseDown, OnMouseUp .. 27

OnMouseMove ... 28

OnKeyDown, OnKeyUp ... 29

OnKeyPress ..30

Form Events – OnOpen, OnLoad, OnResize, OnActivate, OnUnload, OnDeactivate and

OnClose .. 31

Recordset Control Events – OnCurrent, BeforeUpdate, AfterUpdate, OnChange 35

OnTimer Events ... 37

Exercises ... 38

Answers .. 39

03 - Data Types, Variables, Constants and Operators

Learning Objectives

After you have finished reading this unit you should be able to:

 Declare a variable

 Say what a data type is

 Say what scope the main data types have

 Declare and instantiate a constant

 Understand naming conventions

 Use arithmetic operators

Variables

When writing code in V.B.A. we often need to do calculations based on values that can

change. An example would be a Transaction Processing System that needs to calculate the

tax on a sale. Sales tax can change (although not very often) but the price of the item(s) we

are adding tax to can and will vary with every transaction. For that reason we use variables in

V.B.A.

Figure 3.1

In Figure 3.1 we have 3 variables named ItemPrice, SalesTax and PriceIncVAT that we use to

work out the price of an item including V.A.T. The values for ItemPrice and SalesTax the user

will be asked to input themselves and the final variable PriceIncVat is a calculated value

based on a business rule.

We need to use variables here as the values can and will vary depending on the situation and

needs to the business.

Declaring variables

Variable declaration is the act of telling VBA the name of your variables before you actually

use them. You should always declare the variables you will use as soon as logically possible,

which usually means at the top of your function or sub procedure. You should also state the

data type of your variables (we discuss this later on in this unit). In Figure 4.1 we are telling

V.B.A. that we would like to declare a variable called ItemPrice which has a data type double.

We do the same for SalesTax and PriceIncVAT.

1

2

3

4

5

6

7

8

9

10

11

12

Sub getPriceIncVAT()

Dim ItemPrice As Double

Dim SalesTax As Double

Dim PriceIncVAT As Double

ItemPrice = InputBox("What is the price of the item?")

SalesTax = InputBox("What is the tax? (20%=0.2)")

PriceIncVAT = ItemPrice + (ItemPrice * SalesTax)

MsgBox ("The price of the item including VAT is: $" & PriceIncVAT)

End Sub

It is a good idea and standard practice to declare variables and data types

Dim

To declare a variable in VBA we use the keyword Dim (which stands for dimension).

1

2

Dim Age As Integer ‘ VBA makes space for Age, of type Integer

Dim Name as string ‘ VBA makes space for Name, of type String

Figure 3.2

The name of the variable must follow Dim and the type of the variable should follow with the

keywords “As” and then the type.

Note
If, at the top of the module, you have the words “Option Explicit” you must let V.B.A. know

the data type that you will be assigning the variable (e.g. as Integer, as Double, as String).

If, however, you omit “Option Explicit” at the top of the module, you don’t have to let V.B.A.

know what type of data you are going to use. V.B.A. will assume that you are using the

data type “Variant” and proceed accordingly. This is perfectly acceptable but not

recommended as the data types are not optimal.

Restrictions on naming variables

The names we can use for variables must conform to a small set of rules:

1. They must begin with a letter or an underscore (_).

2. They must end with a number or letter.

3. They may contain any sequence of numbers or letters or underscores (_).

4. They may contain upper or lower case letters.

5. They must not be one of VBA’s keywords.

The compiler will automatically tell you if a variable is illegally named and will not execute

unless variables are valid.

Figure 3.3

1

2

3

4

5

6

7

8

9

10

11

12

13

Dim a as String ‘ is a valid variable name

Dim b_ as String ‘ is a valid variable name

Dim _b as String ‘ variable names must start with a letter

Dim 2b as String ‘ variable names must start with a letter

Dim c1 as String ‘ is a valid variable name

Dim d12 as String ‘ is a valid variable name

Dim e_e1 as String ‘ is a valid variable name

Dim f! as String ‘ punctuation not allowed in variable names

Dim g as String ‘ is a valid variable name

Dim dim as String ‘ is not valid – “Dim” is a keyword

Dim string as String ‘ is not valid – “String” is a keyword

Dim number as String ‘ number is not a keyword so this is valid

Naming Conventions

A naming convention is a way of naming variables which enables us to easily understand

both the data type of the variable and the reason for its existence. There are a couple of rules

to follow when naming variables.

 Use meaningful variable names – make your variables mean something. Zzxd isn’t

meaningful, but fileNotFound means something to a human, even though it doesn’t

affect the computer or VBA in any way.

 Use camelCase for variables – that is, for every word in your variable name make the

first letter is upper-case, except the first letter of the first word. thisIsCamelCase .

 Use UPPER_CASE for constants – when you declare a constant the name of that

constant is usually capitalised. This means nothing to the compiler but means

everything to you (we look at constants later on in this unit).

Another convention is to use up to 3 small letters before the variable name to indicate the

data type.

 iMyNumber would be of type Integer

 dblMyOtherNumber would be of type Double

 strText would be of type String

Constants

Constants differ from variables in that their value does not change after they have been

declared. This is how we code with constants:

1

2

3

4

Dim a as String ‘ is a regular variable declaration

Const B = 1 ‘ declare the constant B with a value of 1

Const DATABASE_NAME = “accdb_firsttime”

 ‘ new constant called DATABASE_NAME

Figure 3.4

You may have noticed that constants are not given a data type; this is because VBA makes

some intuitive assumptions about the data. For example, any text surrounded by double

quotation marks is a String; any number without a decimal point will fit into a Long; any

decimal number will fit into a Double, and any True or False values fit into a Boolean value

(True or False). This is the same logic VBA will take if you were not to define your data type

on a variable using Dim.

Variable Scope

 When you declare a variable in your program you also implicitly determine which parts of

your code can access it. In VBA there are three types of declaration that affect the scope of a

variable; Procedure, Module and Public.

Figure 3.5

Procedure Level Scope

Procedure level scope means that a variable is recognised only within that procedure. In

Figure 4.5 the variable PriceIncVAT has a procedure level scope and is only recognised

within the sub-procedure getPriceIncVAT. To achieve this we use the dim or static keywords

and declare the variable inside the sub procedure we wish to recognise it.

Module Level Scope

Module level scope means that a variable can be recognised by any sub procedures within the

module. In Figure 4.5 ItemPrice has a module level scope and this is reflected in the fact that

the variable is recognised in getItemPrice and getPriceIncVAT. To give a variable a module

scope we declare it at the top of the module and use the private keyword (private means it is

only available to sub procedures within the module it is declared in).

Public Level Scope (also known as Global Scope)

Public level scope means that a variable is recognised by every sub-procedure and function

within the active application. (In Figure 4.5 SalesTax has a public level scope.) This can be

useful for variables that should be consistent throughout the application (e.g. SalesTax

shouldn’t be 20% in one sub procedure and %15 in another). It is convention to create a

module with a name like “Globals” where it is possible to keep all of the public variables in

one place where they can easily be maintained and modified as required.

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22

23

24

Option Explicit

'Global Declaration

Public SalesTax As Double

'Module Level Declaration

Private ItemPrice As Double

Sub getPriceIncVAT()

Dim PriceIncVAT As Double

Call getSalesTax

Call getItemPrice

PriceIncVAT = ItemPrice + (ItemPrice * SalesTax)

MsgBox ("The price of the item including VAT is: $" & PriceIncVAT)

End Sub

Sub getSalesTax()

SalesTax = InputBox("What is the tax? (20%=0.2)")

End Sub

Sub getItemPrice()

ItemPrice = InputBox("What is the price of the item?")

End Sub

Arithmetic Operators

Like all languages VBA has a set of operators for working on Integer (whole) and floating-

point (decimal) numbers. The table below demonstrates all 9 of them. VBA also offers many

other operations built in as commands in the language.

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Sub ArithmeticOperators()

Dim a1 As Integer

Dim b1 As Integer

Dim c1 As Integer

Dim a2 As Double

Dim b2 As Double

Dim c2 As Double

' + addition

a1 = 10

b1 = 20

c1 = a1 + b2 ' c1 = 30

' - subtract

a2 = 9.8

b2 = 5.3

c2 = a2 - b2 ' c2 = 4.5

' * multiplication

a1 = 9

b1 = 8

c1 = a1 * b1 ' c1 = 72

' / division floating-point

a2 = 120.5

b2 = 8.12

c2 = a2 / b2 ' c2 = 14.8399014778325

' \ division integers

a1 = 256

b1 = 8

c1 = a1 \ b1 ' c1 = 32

' mod - returns the remainder of a division

a1 = 100 Mod 3 ' a1 = 1

a2 = 100 Mod 3.1 ' a2 = 1, mod only returns whole numbers

' ^ powers

a1 = 2 ^ 2 ' a1 = 4

b1 = 3 ^ 3 ^ 3 ' b1 = 19683

End Sub

Figure 3.6

Common Errors

Not using the Option Explicit Statement

The option explicit statement is useful because it ensures that we must declare our variables.

(As mentioned, VBA assumes the data type variant for all non-declared variables when

option explicit isn’t used).

The Option Explicit statement should go at the top of the application before any code has

been written.

Data Types

When working with data in V.B.A. it is important that we don’t try to add 15 to the word

“Hello” or try to divide 07/02/12 by 53 as V.B.A. will not be able to make sense of these

calculations (and, frankly, neither can we). In order to ensure the integrity of the data that

we make calculations upon we are required to use data types.

Data types are essentially restrictions that are placed on data that are manipulated in the

V.B.A. environment. These restrictions allow us to tell V.B.A. that we are creating a variable

and that variable will only accept a specific type of data. An example of this would be the

integer data type. Integer is just a fancy way of saying whole number and if we declare a data

type as an integer it will only accept a whole number.

Figure 3.7

Here we have created a variable called HouseNumber and informed V.B.A. that we wish this

variable to be of type integer. This means that we will only be able to assign a whole number

to it. Ergo…

Figure 3.8

…would be a perfectly acceptable assignment statement whilst…

Figure 3.9

…would not.

Dim HouseNumber as integer ‘ This variable will only accept integers

Dim HouseNumber as integer

HouseNumber = 5

Dim HouseNumber as integer

HouseNumber=”Car”

There is also another reason for the existence of data types. Different data types take up

different amounts of memory depending on how complex they are. An example of this would

be the integer data type vs the double data type.

We can use the double data type to store non-integer numbers. So, for example, whereas we

couldn’t accurately store the number 2.531 as an integer (it would round it up to 3) we could

use the double data type for this value. The double data type, though, uses twice as much

memory as the integer data type (8 bytes vs. 4 bytes) and, although not a big drain on the

memory, with large applications that use many variables it can and will affect performance if

the correct data are not assigned the correct data type. So, if you need to store integers, use

the integer data type; if you need to store text strings, use the string data type. And so on.

Data types and definition

Firstly a word on VBA variable names; a variable may be named anything you wish as long as

it conforms to VBA’s naming rules. Variable names must start with a letter, may contain

number characters or underscores (_) but that’s it! Punctuation marks are not allowed.

Also unlike other languages VBA is case-insensitive! This is important to understand and

is demonstrated below.

Finally, there are some keywords that cannot be used as variable names.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Dim a as String ‘ a valid variable name

Dim b_ as String ‘ a valid variable name

Dim _b as String ‘ variable names must start with a letter

Dim 2b as String ‘ variable names must start with a letter

Dim c1 as String ‘ a valid variable name

Dim d12 as String ‘ a valid variable name

Dim e_e1 as String ‘ a valid variable name

Dim f! as String ‘ punctuation not allowed in variable names

Dim g as String ‘ a valid variable name

Dim G as String ‘ an invalid variable name. VBA is case-

 ‘ insensitive, variables also cannot be

 ‘ declared more than once in a code block

Dim aVariableName as String ‘ a valid variable name

Dim a_Variable_Name as String ‘ a valid variable name

Dim HELLOWORLD as String ‘ a valid variable name

Dim dim as String ‘ variable name is invalid as Dim is a keyword

Figure 4.10
Figure 3.10

Boolean - (Yes/No)

A variable of type Boolean is the simplest possible data type available in VBA. It can only be

set to 0 or -1. These are often thought of as states and correspond to Access’s Yes/No fields.

In VBA you can assign a Boolean variable to True (-1) or False (0) or the numbers indicated

in the brackets.

Notice I used capitalised words for True and False, which is because they are VBA keywords

and you cannot call a variable a Keyword.

1

2

3

4

Public Sub trueOrFalse()

Dim foo As Boolean

Dim bar As Boolean

foo = True ' foo holds the value True

5

6

bar = False ' bar holds the value False

End Sub

Figure 3.11

Integer

At the beginning of the section we said that we have to tell the computer what type of data to

expect before we can work on it. An Integer is another number data type, but its values must

be between -32,768 and 32,767, and they must be whole numbers, that is to say, they mustn’t

contain decimal places. If you or your users try to save a decimal value (eg 2.5) to an integer

variable, VBA will round the decimal value up or down to fit into an Integer data-type.

1

2

3

4

5

6

7

8

9

10

Sub IntegerDataType()

Dim foo As Integer

Dim bar As Integer

Dim oof As Integer

foo = 12345 ' foo is assigned the value 12,345

bar = 2.5 ' bar is assigned the value 3 as VBA rounds it up

bar = 2.4 ' bar is assigned the value 3 as VBA rounds it down

foo = 32768 ' causes an overflow error as 32,768 is too big

End Sub

Figure 3.12

Long

Long is another number type and works just like Integer except it can hold a much larger

range; Any number between -2,147,483,648 and +2,147,483,647.

1

2

3

4

Sub LongDataType()

Dim foo As Long

foo = 74345 ' foo is a variable assigned the value 74,345

End Sub

Figure 3.13

Single

Single is the smaller of the two “floating point” data types. Singles can represent any decimal

number between -3.4028235E+38 through 1.401298E-45 for negative numbers and

1.401298E-45 through 3.4028235E+38 for positive numbers. Put more simply, the single

data type has a decimal point in it.

1

2

3

4

5

6

7

Sub DoubleDataType()

Dim foo As Single

Dim bar As Single

foo = 1.1 ' foo keeps the .1 decimal part

bar = -20.2 ' bar also keep the decimal part

foo = foo * bar ' foo equals -22.2200008392334

End Sub
Figure 3.14

Double

This is a “floating point” number as well and range in value from -

1.79769313486231570E+308 through -4.94065645841246544E-324 for negative values and

from 4.94065645841246544E-324 through 1.79769313486231570E+308 for positive values.

1

2

3

4

5

6

7

Sub DoubleDataType()

Dim foo As Double

Dim bar As Double

foo = 1.1 ' foo keeps the .1 decimal part

bar = -20.2 ' bar also keep the decimal part

foo = foo * bar ' foo equals -22.2200008392334

End Sub
Figure 3.15

Currency

This data-type is a third “floating-point data” type in disguise. It’s a Single which has been

engineered to represent behaviours typical of currencies. In particular it rounds off numbers

to four decimal places. See the Figure below:

1

2

3

4

5

6

7

8

9

Sub CurrencyDataType()

Dim bar As Single

Dim foo As Currency

bar = 1.1234567 ' this is the Single

foo = bar ' add the Single to the Currency

MsgBox bar ' bar contains 1.1234567

MsgBox foo ' foo contains 1.1235. Notice that the 4th digit

 ' has been rounded up to 5

End Sub
Figure 3.16

Date

The Date data type is used to perform operations that involve dates AND times. In VBA

there are several functions that operate on date variables which perform date and time

calculations. It is important to know that date and time operations can be quite complicated

and to help ease your burden you can use VBA’s DateTime object which encapsulates a lot of

the difficulty of working with dates and time and can make them a little less of a headache to

deal with. Date data types are the most complicated of all the data types to work with.

Here are a few operations we can do with date data types.

1

2

3

4

5

6

7

8

9

10

11

12

Sub DateDataTypes()

Dim bar As Date

Dim foo As Date

bar = #11/15/1978# ' bar set to this date but has no time

foo = #12/10/2012 11:37:00 PM# ' foo is set to this date and time

bar = #1:00:09 AM# ' bar is 1 hour and 9 seconds

foo = #9:00:00 PM# ' foo is 9PM

foo = foo + bar ' foo is now 22:00:09

MsgBox foo

foo = foo - bar ' foo is back to 9PM

MsgBox foo

End Sub

Figure 3.17

String

A String is any set of characters that are surrounded by double-quotation marks. For

example “dog” is a String that contains three characters. Strings are very important to us as

they can contain human language, and in fact contain almost any data we want, even

numbers and punctuation marks. Strings are very versatile and you will use them

extensively in your code. Often when you ask your users for information you will first store

their input into a String before actually using the data provided; in this way Strings are often

thought of as a safe data type.

Below are some Figures of Strings in action.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Sub StringDataTypes()

Dim bar As String

Dim foo As String

Dim foobar As String

bar = "Hello" ' bar now contains "Hello"

foo = "world!" ' foo contains "world!"

foobar = bar & " " & foo ' foobar now contains "Hello world!"

' notice that foobar has a +" "+ this means a SPACE character has been

' inserted into the String, without it foobar would contain

"Helloworld!".

foobar = bar + " " + foo ' This Figure also shows that you can add

' Strings together (but you cannot subtract!)

foo = "H" & "E" & "L" & "P" ' foo now contains "HELP"

bar = foo & foo ' bar now contains "HELPHELP"

End Sub

Figure 3.18

As stated above, when you collect input from a user you will usually collect it into a String.

But be careful not to confuse String with Number data types. For example:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Dim bar, foo As String

Dim foobar As String

foo = "12.5" ' user inputs "12.5"

bar = "6.3" ' user inputs "6.3"

foobar = foo * bar ' we multiple 12.5 and 6.3

Debug.Print foobar ' print the result

0 ' It's ZERO!

' Remember foo and bar are STRING data types, so multiplying foo and

bar as above is like saying "aaa" * "bbb" = ? It doesn't make sense.

But we collect data in a String because a String can accept all user

input, even if they put a punctuation mark in there.

foo = "12.5.2" ' user made a mistake

bar = "ifvgj212m" ' cat walks across the keyboard

' When collecting user input the data held in a String can be tested

for accuracy and correctness before we load it into an Integer. If the

user has not entered data correctly we ignore or display a useful

message like "Error"...

Figure 3.19

One last thing to mention about Strings. In VBA a String is a “primitive” or simple data type

and cannot be accessed as an array, so foo[0] will cause an error. Also a String is “naturally”

of variable length and the length need not be specified in the Dim statement. More on these

topics later.

Variant

A variant is a special type which can contain any of the data types mentioned above (along

with some others).

When a value is assigned to the variant data type the variable mutates into the type of the

data assigned to it, and in some cases VBA can “detect” the type of data being passed and

automatically assign a “correct” data type. This is useful for collecting data from users and

also for writing procedures and functions for which you want to be able to call with a variable

of any type.

1

2

3

4

5

6

7

8

9

10

11

Sub VariantDataType()

Dim bar As Variant

Dim foo As Variant

Dim foobar As Variant

bar = 1 ' bar is now an Integer

foo = "oi!" ' foo is now a String

foobar = bar + 1.1 ' foobar is now a Double with the value of 2.1

MsgBox TypeName(bar) ' Integer

MsgBox TypeName(foo) ' String

MsgBox TypeName(foobar) ' Double

End Sub
Figure 3.20

Questions

With Option explicit set in all your modules answer the following questions.

Write each answer in a function called myAnswer_ and end if it your question number. For

example:

1

2

3

4

5

6

7

8

Option Compare Database

Option Explicit ‘ make sure this line is in your code

Function myAnswer_1()

 ‘ your code goes here

End Function

Figure 3.21

1. Write code that will declare the following types and set them all to a value

a. boolean

b. integer

c. long

d. date

e. single

f. double

g. currency

h. string

i. date

j. a Variant String

2. write code that performs the following:

a. declares a constant with the value “Hello”.

b. declares another constant called YEAR with the value 2012.

c. declare a variable called myName and assign it your name.

d. declare a second variable called myMesage and join the constant in (a) with

the variable in (c).

e. now add to myMessage the text “. The year is”.

f. now add to myMessage the constant YEAR (hint: function cstr()).

g. finally add the following:

 debug.print myMessage

3. What is the output of the following sub?

1

2

3

4

5

6

7

8

Option Compare Database

Option Explicit ‘ make sure this line is in your code

Sub myAnswer_3()

 iVar1 = 10

 iVar2 = “value of iVar1=” + iVar1

 msgbox iVar2

End Sub

Figure 3.22

4. What will the next code sequence do and why?

1

2

3

4

5

6

7

8

Option Compare Database

Option Explicit ‘ make sure this line is in your code

Sub myAnswer_3()

 Dim iAnswer as Integer

 iAnswer = “42”

End Sub

Figure 3.23

5. What is the difference between the following?

a. A1 = “42.2”

b. A2 = 42.2

c. And what would be the result of A1 * A2?

6. You start your code with the following instruction. Why does it not compile?

1

2

3

4

5

6

7

8

Option Compare Database

Option Explicit ‘ make sure this line is in your code

Sub myAnswer_3()

 Dim function as String

 function = “Hello World!”

 msgbox function

End Sub

Figure 3.24

7. Rewrite the following in camelCase

a. Calculate the age of a tree

b. Tape reader file position

c. User input

d. File pointer

e. Input

f. sMyMessage

8. rewrite the following as constants

a. semaphore stop

b. semaphore start

c. semaphore paused

d. file open

e. end of file

f. carriage return and line feed

g. new line

9. In a new function write code to do the following:

a. Define a global constant called database name and give it the value

“mysqldb_website1”

b. Define another global variable with a meaningful name to hold an IP address,

eg 127.0.0.1

c. In local scope, declare a variable named sDBDetails adding the value of the

constants from (a) and (b) making sure to add a space between them

d. Add the following code and execute your code from the immediate window

i. Msgbox sDBDetails

10. In a new function perform the following mathematical expressions by first assigning

the numbers to letters and then saving the result into z, for example:

a. 12 + 16, would be

i. Dim a, b, z as integer

ii. a=12

iii. b=16

iv. z=a+b

v. debug.print z

b. 100+1+20+2

c. 76 * 89

d. (-50 * 3 * -1) / 10

e. 10 mod 3

f. 2 to the power of 2 to the power of 2

g. 2.5 * 7.6, make sure to preserve the decimal number

h. Assign to an integer the value 2.7 . What is the integer’s value?

i. Concatenate the following Strings with addition spaces between

i. “Winston, you are drunk! ”

ii. “Yes madam, and you are ugly!”

iii. “But in the morning, I shall be sober”

j. What is the square of 27 to the nearest whole number

11. What is displayed in the pop-up message box?

1

2

3

4

5

6

7

8

Option Compare Database

Option Explicit ‘ make sure this line is in your code

Sub myAnswer_11()

 Dim s as String

 s = “I” + “ like “ + “Chinese food!”

 s = s + “ The wai-ters never are rude.”

 msgbox s

End Sub

Figure 3.25

12. What must you do to make the following code work?

1

2

3

4

5

6

7

8

Option Compare Database

‘Option Explicit ‘ make sure this line is in your code

Sub myAnswer_3()

 Dim d as Date

 d = 12 Dec 2012

 msgbox d

End Sub

Figure 3.26

13. In a new function assign the following dates to variables

a. 11 November 1918

b. 3 December 1992

c. 18 October 1871

d. 10 30 PM

e. 12 – 12 – 2012 00:21

f. 1969, July, 20th

14. Declare three variant variables, set their values to a person’s name, any integer value

and any floating-point number, respectively.

15. Write code to answer the following expressions:

a. 20-True

b. True+ True+ True-False

c. (7656 mod 7) / 3

d. 12 + 66 / 11

e. #12-dec-2012# + #01/01/01#

16. Explain the differences between a Long number and a floating point number.

17. Explain why “10:26 PM” and #10:26 PM# are not the same?

18. If you are asking the user for their birth date, which data type would you / could you

temporarily store their answer for further checking?

19. True or false:

a. 20-20 = true?

b. True and true = false?

c. False or true = true?

20. Which of the following are valid variable names

a. aVariable

b. aFunction

c. end

d. while

e. STATE_HOLD

f. STATE OVER

g. File1

h. outputFile_10

i. input-file2

j. $helloWorld

k. 9LivesACatHas

l. todayisyesterday

m. Tomorrow NeverComes

04 - Events

Form and Report Events

An event is any interaction that a human has with the application or when parts of the

application change state, which is invariably because the human has requested something.

Usually this will involve the user clicking a button or entering some text but can also involve

touching the screen, just leaving the mouse curser over a box or form, tabbing around,

cycling through records or part of a chain of events.

The events that we will be concentrating upon in this unit are those associated with Access

forms; reports also have some of these events and operate in the same way but forms are

interactive mediums whilst reports format data in a static report like fashion.

Related Objects

Please open up the CodeExamplesVBAForBeginners application. The objects we will be using

will be frmEvents, frmStudentsDataEntry and frmTimer.

How to create an event in the VBA editor

Modules for forms are
automatically created by Access
when we click on the ellipsis in the
Properties | Events tab.

The form must be open in design
view when you first create an
event.

All events that a Form or Object
can react to are in the Events tab.

 Figure 4.1

In figure 4.1 an On Current event already exists. We know this because [Event Procedure] is

written in the On Current field of the property sheet.

Forms, Controls and their events

Forms are not simple objects. They are made up of a Header, a Detail, a Footer and the Form

itself. Each of these parts of the form has their own set of events which you can see change as

you click on each of these parts of on the form. The little square in the top left is the form

itself. You can add controls to the Header, Detail and Footer areas.

Figure 4.2

Note
Although the form is broken down into several parts the vast majority of the time you will

be dealing with events related to opening the form, closing the form and events for different

controls (combo-boxes, text-boxes, command buttons) that are usually found in the detail

section of the form. This has been reflected in the material for this unit.

The Square represents

the Form object

Click Form Header to

access header events

Click Detail to access

detail events

Click Form Footer to

access footer events Click an object to access

their events

Mouse Events

The main mouse events occur when you click an object such as a section of the form or a

control. A click event actually consists of a MouseDown, MouseUp, MouseClick and

MouseDblClick. These can then also trigger another set of events LostFocus, GetFocus,

Enter, Exit .

Please open frmEvents

Figure 4.3

Using frmEvents we have set up several controls to demonstrate what certain events are

triggered by and how they behave.

OnClick

The OnClick occurs when a Control object is clicked.. This event is most commonly

associated with a command button but can also be used with controls such as text-boxes and

combo-boxes.

To get to the code associated with the OnClick event of cmdOnClick button we open the form

in design view, select cmdOnClick in the property sheet and click on the ellipsis on the far

right hand side.

Figure 4.4

The VBA editor will open up with all the procedures related to that form on display. The

curser should be flashing in Private Sub cmdOnClick_Click().

Figure 4.5

The code associated with cmdOnClick is displayed in Figure 4.6

Figure 4.6

Go back to frmEvents, change it to Form view and click the button to see what happens.

1

2

3

Private Sub cmdOnClick_Click()

MsgBox "That was a mouse click!"

End Sub

Figure 4.7

The OnClick event fired and the statement MsgBox "That was a mouse click!" was executed.

OnDblClick

The double click event occurs when the system identifies that the user has double-clicked an

object.

Here is the code associated with the double click event for the cmdOnDoubleClick button.

1

2

3

Private Sub cmdOnDoubleClick_DblClick(Cancel As Integer)

MsgBox "That was a double click!"

End Sub

Figure 4.8

Double click cmdOnDoubleClick and this is what you should see:

Figure 4.9

OnGotFocus and OnLostFocus

The Got Focus event occurs when a control receives the focus. This can be either by clicking

the control or tabbing into it. If a text-box receives the focus the curser flashes inside it

whereas when a button receives the focus you can just make out a faint dotted line around

the edge.

Figure 4.10

In figure 4.10 the On Dbl Click button has the focus and the dotted line is just visible.

We can trigger the OnGotFocus event of txtGotFocus by either clicking into txtGotFocus or

tabbing over from cmdOnDblClick. Either way the OnGotFocus event will produce this

reaction:

Figure 4.11

1

2

3

Private Sub txtGotFocus_GotFocus()

MsgBox "You have got the focus!"

End Sub

Figure 4.12

The code associated with the OnGotFocus event is displayed in Figure 4.12.

The OnLostFocus event triggers when a control loses the focus. If the focus is on a button

(cmdOnDoubleClick) and you tab or click into txtOnGotFocus, cmdOnDoubleClick loses the

focus right before txtOnGotFocus gets the focus.

To demonstrate this concept click into txtOnLostFocus (not txtOnGotFocus). The curser

should be flashing within the text-box. Now click into txtOnGotFocus. You should see two

messages come up one after another. The first will read:

Figure 4.13

And the second will read:

Figure 4.14

What has happened is that the first event to fire was the OnLostFocus event of

txtOnLostfocus which brought up the message box in Figure 4.13 and second event to fire

was the OnGotFocus event of txtOnGotFocus which brought up the message box in Figure

4.14.

OnMouseDown, OnMouseUp

Although the OnClick event represents the simple clicking of a mouse, it is actually possible

to break it down into two separate events; the OnMouseDown event and the OnMouseUp

event. The OnMouseDown event is fired when the mouse button is depressed and the

OnMouseUp event is fired when the button is released. Before we go to frmEvents to test it

out, have a look at the code associated with the two events. In this case we are using both

these events on one control – txtOnMouseUpDown.

1

2

3

4

5

6

7

8

9

Private Sub txtOnMouseUpDown_MouseDown(Button As Integer, Shift As

Integer, X As Single, Y As Single)

Me.txtOnMouseUpDown.BackColor = vbRed

End Sub

Private Sub txtOnMouseUpDown_MouseUp(Button As Integer, Shift As

Integer, X As Single, Y As Single)

Me.txtOnMouseUpDown.BackColor = vbBlue

End Sub

Figure 4.15

Try and work out from the code in Figure 4.15 what is going to happen when the two events

fire.

Note
The arguments that the OnMouseDown and OnMouseUp events take may seem
complicated but are anything but.

 Button refers to which mouse button was pressed or released to cause the event to
trigger.

 Shift refers to whether any of the SHIFT, CTL or ALT keys were depressed at the
time the event fired.

 X and Y refer to the mouse coordinates.
We will be using the X and Y arguments when discussing OnMouseMove later on.

When the mouse button is depressed the BackColor property of txtOnMouseUpDown
changes to VbRed:

Figure 4.16

When the mouse button is released the BackColor property of txtOnMouseUpDown changes
to VbBlue.

Figure 4.17

Press and release the mouse button slowly to really see the difference between the two
events.

OnMouseMove

The OnMouseMove event corresponds to the mouse curser hovering over a control that

contains that event procedure. The clicking of buttons makes no difference as it is merely the

position of the curser that is important.

In form events there is a text-box named txtOnMouseMove. This text-box has the

OnMouseMove event procedure and the code looks like this:

1

2

3

4

Private Sub txtOnMouseMove_MouseMove(Button As Integer, Shift As

Integer, X As Single, Y As Single)

Me.txtOnMouseMoveCoordinates.Value = X & " " & Y

End Sub

Figure 4.18

txtOnMouseMoveCoordinates is the text-box immediately to the right of txtOnMousemove

and X and Y refer to the coordinates of the mouse. What do you think will happen when you

hover the mouse curser over txtOnMouseMove?

Figure 4.19

As you hover the mouse cursor over txtOnMouseMove the X and Y coordinates are being

displayed in txtOnMouseMoveCoordinates and as you move the position of the curser, the

coordinates change.

OnKeyDown, OnKeyUp

The OnKeyDown and OnKeyUp events are very similar to the OnMouseDown and

OnMouseUp events but are triggered by the depressing and releasing of certain keys. On

frmEvents we have a text-box called txtOnKeyUpDown where we will be testing out the two

events. Before testing out the events let’s take a look at the code behind the text-box.

1

2

3

4

5

6

7

8

Private Sub txtOnKeyUpDown_KeyDown(KeyCode As Integer, Shift As

Integer)

Me.txtOnKeyUpDown.BackColor = vbGreen

End Sub

Private Sub txtOnKeyUpDown_KeyUp(KeyCode As Integer, Shift As Integer)

Me.txtOnKeyUpDown.BackColor = vbYellow

End Sub

Figure 4.20

What do you think will happen when you press a key within the txtOnKeyUpDown text box?

Let’s say you were pressing the ctrl key (the key pressed doesn’t matter in this example as we

are merely interested in firing the event).

Figure 4.21

After pressing the ctrl key the BackColor property of txtOnKeyUpDown changes to vbGreen

(Figure 4.21).

Figure 4.22

After releasing the ctrl key the BackColor property of txtOnKeyUpDown changes to vbYellow

(Figure 4.22).

If you press and hold a key it will repeatedly fire the OnKeyDown event (along with the

OnKeyPress)event.

OnKeyPress

The OnKeyPress event is very similar to the OnKeyDown event with the main exception

being that the key that is pressed must return a character. In the examples illustrated in

Figures 4.21 and 4.22 pressing the ctrl key would not trigger the onKeyPress event.

If you click into txtOnKeyPress and start tapping keys you will notice that

txtOnKeyPressCounter increments by 1 (until it reaches 100) if the key pressed returns a

charcter.

Form Events – OnOpen, OnLoad, OnResize, OnActivate, OnUnload,

OnDeactivate and OnClose

Opening a Form

There are two types of form specific events, the first being those associated with the

graphical user interface, and the second associated with data and recordsets.

When a form is opened or closed there are a number of stages which a form goes through in

order to be capable of displaying itself. The following are the states and each has an

associated event:

When the form is opening: Open Load Resize Activate Current

When the form is closing: Unload Deactivate Close

The Open Event is the first to be fired. In this event you can check whether data exists in the

database for the form to work with, and if it doesn’t you can Cancel = True to prevent the

form from opening.

The Load Event is significantly different from the Open Event in that it cannot be cancelled.

The Resize Event deals with positioning of controls on the form. It is also called whenever

the form is minimised, resized, moved, maximised or restored.

The Activate Event is associated with the GetFocus event except Activation is to windows

(forms, reports and dialog boxes) what focus is to controls. You may want your code to

refresh its view of the recordset in case any data has been updated since it was last active.

The Current Event occurs when the form is ready and retrieves data from the underlying

recordset. This event is also the first step the form takes in its efforts to handle recordset

data.

Please open up frmStudentsDataEntry. We will be using the immediate window to help us

ascertain the correct order of events . To open the immediate window you:

 Click on the view drop-down box

Figure 4.23

 Choose Immediate Window

Figure 4.24

 It should be visible at the bottom of your screen (the immediate window can be

docked in many different places but it is typical to have it docked below the code

window)

Figure 4.25

Note
The immediate window is a tool that can be used for debugging purposes and to call sub
procedures and functions. We will be discussing the immediate window in much more
detail in a later unit. For now, you just need to know that when you write Debug.Print in a
subprocedure or function, whatever follows will be printed to the immediate window. Ergo,
Debug.Print "Form_Activate!"will print Form_Activate! In the immediate window. We will
be using this technique to demonstrate the order in which form events are fired.

Here is the code for all the events associated with the opening of a form. If you select

Form_frmStudentsDataEntry from the Object Explorer (window in top right of screen) of

the VBA editor you will see this code.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Option Compare Database

Private Sub Form_Activate()

 Debug.Print "Form_Activate!"

End Sub

Private Sub Form_Current()

 Debug.Print "Form_Current!"

End Sub

Private Sub Form_Load()

 Debug.Print "Form_Load!"

End Sub

Private Sub Form_Open(Cancel As Integer)

 Debug.Print "Form_Open!"

End Sub

Private Sub Form_Resize()

 Debug.Print "Form_Resize!"

End Sub

Figure 4.26

Opening a form we see the order in which this series of events prints to the immediate

window.

Figure 4.27

Closing a Form

Closing a form has fewer events than opening a form but is equally structured. Just to

remind us: When the form is closing: Unload Deactivate Close

The Unload Event (and the load event) is Cancellable. Setting Cancel = True will prevent the

form from being closed. This is very useful when users haven’t saved their data and you wish

for them to confirm that the changes are desired.

The Deactivate Event is the window equivalent of LostFocus. One cannot do anything about

it but one could save data to the database which hasn’t been committed.

The Close Event is a form and report object function. At this stage the object will be deleted

once the event has finished.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Option Compare Database

Private Sub Form_Close()

 Debug.Print "Form_Close!"

End Sub

Private Sub Form_Deactivate()

 Debug.Print "Form_Deactivate!"

End Sub

Private Sub Form_Unload(Cancel As Integer)

 Debug.Print "Form_Unload!"

End Sub

Figure 4.28

After closing the form the immediate window will look like this (I have removed the

printouts from the opening of the form):

Figure 4.29

Cancel Form_Close Event

Figure 4.30

12
13

 Cancel = True

 Debug.Print "Form_Unload!"

Insert the above code into your form
to test out the Cancel Unload
operation

Form_Unload!

Recordset Control Events – OnCurrent, BeforeUpdate, AfterUpdate,

OnChange

Data in a form is stored in the form’s recordset property. All these events are associated with

the interaction between the form and this underlying Recordset object.

The Current Event occurs when data in a form or report is refreshed. It typically fires when

the active record on a bound form is changed.

The Before Update Event executes just before the form changes are saved to the database.

This can be seen as an application implementation of update and insert triggers. Here you

would carry out any final data validations, check business rules, populate hidden fields, and

cancel the action altogether. As Access doesn’t implement triggers (as that is a job for the Jet

engine or other data source) this is probably the place where final validation checks should

be done.

The After Update Event executes once the data has been committed to the database. Useful

for updating other tables like audit trails, updating graphics to indicate a save, disable fields

from being changed, close and open up a View type form.

The Change Event executes when data within a text object’s content is changed and before

the Before Update and After Update Events. This means you can validate the content of the

control before it loses focus and before its data is committed to the database. If the Form is

bound to a recordset then changing focus from a changed text control to another control will

automatically attempt to commit the change to the field / record in the database.

Using frmStudentsDataEntry cycle through the records and every time you change a record

you will see Form_Current! being printed in the immediate window.

Figure 4.30

Use these buttons to cycle

through the records

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Option Compare Database

Private Sub Form_Current()

 Debug.Print "Form_Current!"

End Sub

Private Sub Form_AfterUpdate()

 Debug.Print "Form_AfterUpdate!"

 Msgbox “Data change saved!”

End Sub

Private Sub Form_BeforeUpdate(Cancel As Integer)

 Debug.Print "Form_BeforeUpdate"

 If (MsgBox("are you sure", vbYesNo) = vbNo) Then

 Cancel = True

 Me.Undo

 End If

End Sub

Put the form into form view and cycle
back and forth. For each record
movement the immediate window will
have a Form_Current! Line
member

Form_Current!
Form_Current!

Change the value in the textbox and
try to move to the next or previous
record. This dialog should appear.

The BeforeUpdate routine presents
you with this dialog. If you press No
the Cancel argument is set to True
which forces the form not to update
the database and not to progress to
the next record.

BTW, to cancel any changes press
ESC and you’ll be able to navigate
again.

Form_BeforeUpdate!

This time allow the changes to be
saved. This will fire the After update
event and display this message.

Form_AfterUpdate!

Figure 4.31

OnTimer Events

The Timer Event is a special form event that is activated after a set period of time. The exact

time of the event is at least the value of the Timer Interval property.

Open frmTimer to see the event at work. You should see a speedboat speeding across an

ocean.

Figure 4.32

The code that goes behind the form is this:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Option Compare Database

Dim intCounter As Integer

Private Sub Form_Load()

 Me.imgSpeedboat.Top = 2750

 intCounter = 12500

 Me.TimerInterval = 100

End Sub

Private Sub Form_Timer()

intCounter = intCounter - 500

If intCounter < 200 Then

 intCounter = 12000

End If

 Me.imgSpeedboat.Left = intCounter

End Sub

Figure 4.33

Although the code in figure 4.32 may look complicated it is actually fairly simple. Essentially
every 1/10 of a second (Me.TimerInterval = 100) the Form-Timer() sub procedure is fired.
And every time the the Form-Timer() subprocedure is fired the image of the speedboat is
moved 500 twips to the left (a twip is a unit of measurement in Access. 1440 twips = 1 inch).
And when there is no more left left (so to speak) the image is moved to 12500 twips from the
left. And the whole thing repeats ad infinitum.

Exercises

1. What should be written in the On Current field of the property sheet to indicate that an
event procedure exists for the On Current event?

2. When is the OnMouseUp event triggered?
3. Will the OnMouseDown event fire if you right-click a mouse?
4. If you tab from txtFocus1 to txtFocus2, which event fires first? The OnLostFocus event or

the OnGotFocus event.
5. Look at this code:

1

2

3

4

Private Sub txtOnMouseUpDown_MouseDown(Button As Integer, Shift As

Integer, X As Single, Y As Single)

Me.txtOnMouseUpDown.BackColor = vbRed

End Sub

Figure 4.34

True or False: The argument Button (highlighted in red) refers to the button or text-box
clicked on a form.

6. In the above code snippet what do the buttons X and Y represent?
7. What causes the OnMouseMove event to fire?
8. Look at this code:

1

2

3

Private Sub txtOnKeyPress_KeyPress(KeyAscii As Integer)
MsgBox “You have pressed a key!”
End Sub

Figure 4.35

If txtOnKeyPress had the focus, what would happen if we pressed the ctrl key?

9. These are the 5 events associated with opening a form:
Activate
Load
Current
Resize
Open
In what order are these events executed when a form opens?
10. In what order should these will these events associated with closing a form be fired?
Close
Unload
Deactivate
11. Although similar in nature, what is the difference between the Activate event and the

OnGotFocus event?
12. When does the BeforeUpdate event fire?

Answers – Data types, variables, constants and operators

1. If written as a statement in a function (1 mark)

If all given different names (1 mark)

Otherwise 1 mark for each of the following

a. Dim a As Boolean /cr/lf/ a = true or false or -1 or 0

b. Dim a As Integer

c. Dim a As Long

d. Dim a As Date

e. Dim a As Single

f. Dim a As Double

g. Dim a As Currency

h. Dim a As String

i. Dim a As Date

j. Dim a As Variant

2. 1 mark for each line

a. Dim CONSTANT_NAME = “Hello “ ‘ there’s a space at the end

b. Dim YEAR = 2012

c. Dim myName as String

i. myName = “pupil’s name”

d. Dim myMessage as String

i. myMessage = CONSTANT_NAME + myName

e. myMessage = myMessage + “. The year is “

f. myMessage = myMessage + CStr(YEAR)

g. debug.print myMessage

3. No output as this subroutine does not compile

4. 1 mark for stating 42, +1 mark VBA automatically converts “42” into Integer type

5. 1 mark for each

a. The String “42.2” is added to A1

b. The Double 42.2 is added to A2

c. Type mismatch error

d. Cannot multiply string by integer

6. Function is a keyword

7. 1 mark for each

a. calculateTheAgeOfATree

b. TapeReaderFilePosition

c. UserInput

d. FilePointer

e. Input

f. sMyMessage

8. 1 mark for each

1. SEMAPHORE_STOP

2. SEMAPHORE_START

3. SEMAPHORE_PAUSED

4. FILE_OPEN

5. END_OF_FILE

6. CARRIAGE_RETURN_AND_LINE_FEED

7. NEW_LINE

9. 1 mark for each

a. Const DATABASE_NAME = “mysqldb_website1”

b. Dim IP – IP may be anything as long as its meaningful and camelCase

i. In function – IP=”127.0.0.1”

c. In function

i. sDBDetails = DATABASE_NAME + “ “ + (b variable)

d. Msgbox sDBDetails

e. Everything in a function

10. 1 mark for each. They should all follow the same basic format given in (a)

8. Value is 3, rounding

9. “Winston, you are drunk! ” + “Yes madam, and you are ugly!” + “But in the

morning, I shall be sober”

10. Trick question, “nearest whole number”

10.1.1. Dim a, z as Integer

10.1.2. a = 27

10.1.3. z = a*a

11. 1 mark

a. “I like Chinese food! The wai-ters never are rude.”

12. 1 mark,

a. Line 6 needs #’s: d = #12 Dec 2012#

13. 1 mark for each

a. All should have #’s around them EXCEPT f, which needs to be rewritten

without the “th”

14. 1 mark for each

a. Dim [variable name] as Variant / or Dim name

b. Followed by respective values

15. 1 mark for putting all into a single function

1 mark for each expression

a. 21

b. -2

c. 1.66666666666667

d. 18

e. 15/12/2113 – yes, that’s the answer; VBA doesn’t make sense here

16. 1 mark for each

a. An integer holds whole numbers

b. An floating-point number holds decimals / numbers and fractions

c. An integer holds less data than a floating-point number / or vice-versa

d. Integers are calculated in the CPU

e. Floating-point numbers are calculated in the FPU / ALU

17. 1 mark – the first is a string, second a date

18. 1 mark – String

19. 1 mark for each

a. False

b. False

c. true

20. 1 mark for each

a. aVariable - valid

b. aFunction - valid

c. end – invalid keyword

d. while – invalid, keyword

e. STATE_HOLD - valid

f. STATE OVER – invalid, no spaces allowed

g. File1 - valid

h. outputFile_10 - valid

i. input-file2 – invalid, means input subtract file2, input is also a keyword

j. $helloWorld – invalid, variables must start with a letter

k. 9LivesACatHas - valid, variables must start with a letter

l. todayisyesterday – valid, but should be camelCase

m. Tomorrow NeverComes – invalid, nospaced in strings

Answers - Events

1. [Event Procedure]

2. When a depressed mouse button is released.

3. Yes.

4. The OnLostFocus event.

5. False: it refers to which mouse button was pressed.

6. The Coordinates of the mouse curser.

7. Hovering the curser over an object that has an event procedure for OnMouseMove.

8. Nothing. The onKeyPress event is only triggered by keys that return characters.

9. Open Load Resize Activate Current

10. Unload Deactivate Close

11. The activate event fires when a window (such as a form, report or dialog box) receives the

focus whilst the OnGotFocus event fires when a control receives the focus.

12. Just before committing changes to the server.

