

VBA Made Easy

Access VBA

Fundamentals
Level 1

www.AccessAllInOne.com

This guide was prepared for AccessAllInOne.com by:
Robert Austin

This is one of a series of guides pertaining to the use of Microsoft Access.

© AXLSolutions 2012
All rights reserved. No part of this work may be reproduced in any form, or by any means,
without permission in writing.

Contents
Introduction ... 4

Assumptions ... 4

Terminology ... 4

01 - The VBA Editor, Converting Macros .. 5

Learning Objectives.. 5

Introduction ... 6

The VBA Editor through the Ribbon .. 7

VBA Editor through the Form Designer ... 7

VBA Editor through the Form Designer Properties Window .. 8

VBA Code not Working - Activating VBA Code .. 8

The VBA Editor Explained ... 9

Code Window.. 9

Project Explorer Tree ... 10

Properties Window .. 11

Immediate Window ... 11

Watch Window ... 12

How to select different Forms and Reports (from project explorer) 12

How to select different Modules .. 13

How to Rename Modules ... 14

Basic Tools for Writing Code ... 15

Line Continuation Character .. 15

Indenting Code ... 15

Editor Format to Adjust Colours .. 15

Naming Conventions .. 16

Select Object Dropdown and Procedures Dropdown ... 17

Procedural View and Full Module View ... 17

DoCmd Syntax and Arguments Explained .. 18

How to Convert a Standalone Macro ... 19

How to Convert a Form’s Embedded Macros ..20

When to use Macros and VBA ..20

Questions .. 21

02 - Objects, Properties and Methods ... 25

Learning Objectives.. 25

Objects .. 25

Properties ... 25

Methods .. 26

The Recordset object .. 27

Collections .. 28

Objects, Properties and Methods – An Analogy .. 29

Programming with Objects ..30

Questions .. 41

Answers – The VBA Editor, Converting Macros .. 42

Answers – Objects, Properties and Methods ... 44

Introduction

Assumptions

We assume the following:

 You have a working knowledge of Microsoft Access (2007 or 2010).

 You know how to create Tables, Queries, Forms, Reports and Macros.

 You know how to add Controls to Forms and Reports.

Terminology

 Controls will refer to objects such as text-boxes, combo-boxes and list-boxes.

01 - The VBA Editor, Converting Macros

Learning Objectives

After you have finished reading this unit you should be able to:

 Open the VBA editor in a number of different ways.

 Identify the code window, project explorer and immediate window.

 Select different forms and reports from the project explorer.

 Select and rename modules.

 Use basic tools for writing code.

 Understand the “DoCmd” object.

 Convert Macros to VBA code.

Introduction

The VBA Editor is what we use to enter VBA code for Forms, Reports, custom functions and

more. In fact all Microsoft Office applications (Word, Powerpoint, Excel, Outlook) use the

same VBA Editor, so although we are learning to program with Access you will also be able to

transfer ALL your skills and knowledge and even automate between applications.

Note
In this unit you will be seeing many examples of code in order to demonstrate some of the
features of the VBA Editor. You are not expected to understand everything and some of it
may even seem particularly complicated. But rest assured! We will be covering everything
in detail throughout this course.

The first part of the unit will involve getting to grips with the VBA editor and understanding

the functions of the various windows

Figure 1.1

Figure 1.1 is the VBA Editor with three areas highlighted; the Project Explorer, Code Window

and Immediate Window. This is what is known as an Integrated Development Environment,

which means everything you need to write programs and code are all in this one window.

Code Window

Enter VBA code here

Immediate Window

Used for debugging and testing

Project

Explorer

Manage all

modules in

your

application

Note
The IDE is quite a simple idea but the first IDEs only arrived in 1995! Before that time, and

this is still the case with some languages, the only way to compile programs was / is by

using command-line tools.

More on the IDE in a few moments.

There are a couple ways to open the editor, all of which are quite natural once you learn

them.

The VBA Editor through the Ribbon

From the ribbon select Create tab and to the far right is the Macro drop down; select Module.

Now you carry out the same sequence of commands and open the VBA Editor.

Figure 1.2

VBA Editor through the Form Designer

When in the form designer you can click the VBA Editor Button under Tools to bring up the

IDE.

Figure 1.3

VBA Editor through the Form Designer Properties Window

Or, if you open the property
window (F4) and click the
Events tab, any of the ellipses
(…) will open the VBA editor.
The form must be in design
view, however.

We suggest you do this as an
exercise now. It will probably
be the most common way you
open the VBA editor.

Figure 1.4

VBA Code not Working - Activating VBA Code

If you ever see this dialog:

Figure 1.5

It is probably because you need to activate this:

Figure 1.6

Navigate back to Access front end.
Click on Options… and tick the Enable Content Checkbox. Done.

Note
This is a feature of Access 2007/2010 which disables all VBA code until explicitly allowed to

function. You can tell Access not to display this error but you need to set up a “Trusted

Location”, which is basically a nominated area where you can place programs that you

know to be safe.

The VBA Editor Explained

There are five main areas of the editor that you need to know about. Here are four:

Figure 1.7

Code Window

The Code Window is where all your VBA code will be written. It has syntax highlighting,

which means keywords in VBA, - such as Function, CStr, Return and others - will all appear

in one colour, numbers in another colour, punctuation, comments and strings in yet other

colours. It looks more appealing and makes reading lines of code much easier.

Another feature of the editor is
called Code Completion. This is
a useful feature; when you type
in commands the editor will
display possible values which it
believes you may need. For
example if you type Dim a As
Str_ this --------->
will happen.

Figure 1.8

Code Window

Immediate Window

Project

Explorer

Properties

Window

Project Explorer Tree

The project explorer shows you all
the modules available in your
database and any add-ins or libraries
you’ve included.

Modules are kept in three areas:

* Microsoft Office Access Class
Objects

* Standard Modules

* Class Modules

Select a form module and double
click it to see any sub procedures or
functions it may contain.

Figure 1.9

Microsoft Office Access Class Objects

These are VBA modules that are owned by (or children of) Forms and Reports. Their name

will always be prefixed with “Form_” or “Report_”. In these modules you will put all the

event code that makes your forms and reports perform essential actions – like opening and

closing. Unlike Standard Modules code in these modules is not normally available outside

the form, they are private.

Now, using the Teaching Institute Software System, open one of the form modules and look

at the sub procedures (Sub in VBA language). All of them start with Private which means

the only code within that module can use the methods.

Standard Modules

Standard modules contain code which may be accessed by any of the module types. In

Standard Modules will go code that doesn’t belong in forms or reports, for example a library

of business rules or constants and types which are used by Forms and Reports. By default

anything written in here is available anywhere else in the project – this is known as global

scope.

Class Modules

Each Class Module contains code that revolves around a Class, which is a type of data-type or

object. By default, anything written here is available elsewhere in the project. Just to

mention here that Class Modules ultimately support the Standard Modules and Access Class

Object Modules by providing new functionality not supplied with Access and specialist

functionality that you have developed and your organisation may need in other projects.

Properties Window

The properties window is available in
two places; the first is in the Form
Design window docked to the right. The
second is usually bottom left in the VBA
IDE. If it’s not there you can bring it up
by pressing F4 or using the view menu.

Figure 1.10

Immediate Window

The immediate window is located at the bottom of the screen and is the big blank window

that says immediate in the title.

Using this window, you can test code snippets, test out your functions directly rather than

through a form’s button, and also debug your code.

Here is a small introduction. Try typing print now() and see what date and time come up.

Then try Print InputBox(“what’s your name?”)

Figure 1.11

Watch Window

Figure 1.12

It is a little premature to bring in the Watch
Window but you will be using it soon so just
take note.

The Watch Window is used in debugging
your code to watch and keep an eye on the
variables in your code. You can also set a
trap, so if one of your variables becomes a
particular value you can trigger a break
which will cause your program to stop
running so you can inspect its state. More on
this topic in the next unit.

How to select different Forms and Reports (from project explorer)

In the Project Explorer the items
contained within folders are all Modules.

Here we have 4 Form modules and 1
Standard module.

If you select and double click a form, the
VBA module code will load up.

Ultimately all forms will have a module of their
own because forms look pretty but do little
without VBA code.

You can explore this now by opening a form that
doesn’t have a module and giving it one. There
are a few ways to do that but here’s the most
straightforward.

 Open a form in design view.

 Click on a control, like a button.

 In the Properties window click on the
Events tab.

 Click the Ellipsis of the On Click event.

 Access will now automatically create a
new module with the name
Form_myForm!

Figure 1.13

How to select different Modules

Modules can be seen in two places, in the Access IDE and the VBA Editor IDE. Modules in
the Access IDE are visible because they have no owner, per say, except that they belong to
the project you are working on. Modules that “belong” to forms and reports are not shown
here; they show up in the VBA Editor IDE.

If you want to add new modules use the instructions shown previous.

Access IDE

VBA Editor IDE

Figure 1.14

How to Rename Modules

Unlike other objects in Access renaming modules is easy, even when they are open.

Select Module and hit F2---^^^
Or

Select the module in the VBA IDE and
change the property (Name)----------------
-------------->

Figure 1.15

Basic Tools for Writing Code

The VBA Editor incorporates a number of useful features which help you whilst you are
developing, testing and in production (some of which we have already touched on). Here
we’ll take a closer look at a few code writing features of the VBA editor.

Line Continuation Character

When we write code, we are often required to create string expressions that are wider than

the page itself! Although the entire string is on one line, it makes it more difficult to code as

you constantly have to use the horizontal scroll bar to read exactly what is written.

Figure 1.16

The smart people at Microsoft came up with a simple plan, the line continuation character,

or space and underscore for short. We use this with an ampersand (&) to make our code

easier to read.

Figure 1.17

Indenting Code

Another key assistant to reading our code is the indentation. Indentation gives us a clear

indication of code blocks. Indentation is implicit, so typing in a Public Function Name() and

pressing the enter key will add the End Function and indent your code by two or four spaces

or a tab. This is basically standard practice across all programming languages.

As you can see, it’s easy to see which bits of
code are associated with one another.

Figure 1.18

Editor Format to Adjust Colours

The above example also neatly brings us to syntax highlighting. All keywords in VBA are dark

blue by standard and anything we write is in a black font (except comments which are

green). Syntax highlighting serves to use our sense of colour to add meaning to the code.

You can change the colours too! Follow the steps below: Click on the Tools drop down menu,

select Options… tab over to Editor Format and change as needed. Working under poor

lighting conditions makes the default black on white very uncomfortable, so perhaps a

blackened theme would be more suitable.

Figure 1.19

Naming Conventions

A naming convention is a way of naming variables and objects which your developer group

uses to make code you develop easier to understand. In Figure 1.19, Function

showMeIndentation() is in “camelCase “. Here are some additional naming convention

details:

 Use meaningful variable names – make your variables mean something. Zzxd isn’t

meaningful, but fileNotFound has a semantic meaning for humans (even though it

doesn’t affect the computer or VBA in any way).

 Use camelCase for variables and functions – that is, for every word in your variable

name make the first letter upper-case, except the first letter of the first word.

thisIsCamelCase()

 Use CamelCase for classes, and types – capitalise your enumerations, user-defined

types, class name, but leave functions and variables in camelCase.

 Use UPPER_CASE for constants – when you declare a constant the name of that

constant is usually capitalised. This means nothing to the compiler but means

everything to you.

Amongst VBA developers a typical naming convention is to start all variables with a letter

indicating the variable type (in lower case):

 iMyNumber would be of type Integer

 dblMyOtherNumber would be of type Double

 sText would be of type String

With form and report controls a three letter prefix is very common also:

 txtMyTextBox

 cboMyComboBox

 lblLabel

But, the point of a naming convention is to make your code more accessible to others by

imposing on you and your colleagues a consistent way of writing code. Feel free within your

departments or projects to use whatever naming convention you like, but the key is be

consistent.

If you are working in a large group of developers consider the following:

 keep a module which bears your name and contains the functions for which you are

responsible

 prefix all your functions and subroutines with your initials – the idea here being that

your procedures and function do not clash with other developers

Select Object Dropdown and Procedures Dropdown

Hidden in plain view are two drop down menus just above the Code Editor Window. The

drop down menu on the left is used to select and even indicate which control your cursor is

currently in and the one on the right lists all available events for that object.

Figure 1.20

Figure 1.21

Procedural View and Full Module View

Another useful feature is the ability to switch between module and procedure view in the
code window. Module view is what we normally see but if you have lots of procedures and
functions and would like to only view the one you are working on, click the button on the left
in Figure 1.22 . All the other code will magically disappear!

Figure 1.22

DoCmd Syntax and Arguments Explained

One of the most versatile objects in Access VBA is DoCmd. This one object gives you the
programmer control over how your application operates, issues orders and gives you access
to features that are otherwise confined to the GUI.

For example: on a form you have a button with the caption “Close”. Clicking it does nothing,
because we haven’t added code. So, open a form, add a button control, tab over to Events and
click OnClick. Now enter the following code into the procedure:

 DoCmd.Close ‘ closes the presently active window

DoCmd.Close acForm, Me.Name ‘ Closes any windows with the

 ‘ Name of Me.Name

Figure 1.23

If you use DoCmd.Close it does the obvious, almost. If placed in a form’s OnClick Event the
DoCmd object will fire but it will fire first on the presently active window –which means if
your user happens to be looking at a query result set that took 30 minutes to complete, you
are going to have some explaining to do. So, where possible always qualify exactly what you
want to do, as has been demonstrated in the previous code block example.

DoCmd has some other useful functions listened below.

DoCmd.OpenForm “name” ‘ does just that
DoCmd.MoveNext ‘ advances the form’s recordset cursor by one
DoCmd.FindFirst ‘ finds first record in database – may have been given search parameters
DoCmd.FindNext
DoCmd.Maximise
DoCmd.Minimise
DoCmd.RunCommand ‘ this one method has hundreds of commands relating to the GUI
DoCmd.Close acForm, Me.Name ‘ closes any windows with the Name of Me.Name
DoCmd.RunSQL ‘ excellent for quickly executing an action query when Recordset setup would
take too long

Figure 1.24

How to Convert a Standalone Macro

A Macro is an object that includes a list of instructions, and these instructions translate to

VBA code almost directly. Rather than writing your code in VBA you could, and probably

have already, put together a few Macros to close forms, open forms, email data, navigate

records, etc.

Open a Macro in design view using
the Navigation Pane.

Click on Convert Macros to Visual
Basic in the Tools group of the design
tab of the ribbon.

Click on convert.

When the conversion has finished a
new Standard Module is created with
all the code for the macro contained
within.

Just like Macros the code in the
Converted Macro module is available
elsewhere in your project (unlike
form generated code the functions do
not have Private modifier before
them (more on that in a future unit).

Figure 1.25

How to Convert a Form’s Embedded Macros

Embedded Macros are children of their parent form. You will tell an embedded macro from

an event procedure or normal macro because the Property Sheet of the Form Events tab give

you [Embedded Macro].

Open the form in Design view (it
won’t work in Layout view).

Click on Convert Form’s Macros to
Visual Basic.

Figure 1.26

When to use Macros and VBA

Macros are objects in the Access IDE that perform many application functions without

needing to resort to code in VBA. VBA on the other hand does everything a macro can do

and a whole lot more. Whether you choose to use a Macro or VBA will be down to your

preference and familiarity with VBA or macros. In this course we are learning about VBA so

we will exalt its merits over macros. But for many simple tasks macros are just fine.

Questions

1. Examine the following code. Will it do as the user expects? If not why not?

1

2

3

4

5

6

7

8

9

Sub Message()

Dim strMessage As String

strMessage = "What is your name?"

 MsgBox_

 strMessage ,_

 vbQuestion ,_

 "Name"

End Sub

2. Do the following and answer the questions below.

Create a new form called “Ex_2_Form1”.

Add a combo box, a textbox and a label.

a. What is the third event in the properties window for combo box?

b. On the label what is the third event property called?

c. Does the textbox have a caption property?

d. Select the Detail part of the form, click on Other. What is the name of the

object?

e. Select the form, open Other in property tab. What does “Cycle” mean?

3. True or false …

a. Macros are VBA code?

b. The Form Editor allows you to view and edit VBA code?

c. The Property Sheet in Form View is the same as the Properties window in

VBA IDE?

d. IDE means Individual Data Execution?

e. Macros have fewer commands than VBA code?

f. The Immediate window allows code snippets to be tested and executed?

g. A Class Module is a VBA symbol of elitism over other languages?

h. The Watch window lets you watch the values of variables?

4. A module window is open, you have edited some code. You want to change the

module’s name. How do you do this? (hint: there are two ways).

5. Indenting code is a form of what?

a. Syntactic sugar.

b. Readability aid.

c. Banging out code

6. Which desert animal features predominantly in variable naming conventions?

7. For the following prefixes what is the most likely variable or object type?

a. txt

b. i

c. cmb

d. lbl

e. lng

f. s

g. frm

h. qry

i. mcr

j. C

8. What must you do to convert a macro into a VBA function or procedure?

9. Which of the following are methods or variables that belong to the DoCmd object?

a. Close

b. RunSQL

c. MimicForm

d. Open

e. SetWarnings

f. Crash

g. Beep

h. RunSavedImportExport

i. LockNavigationPane

j. OpenHeadUpDisplay

k. FindNextRecord

10. True or False? Code completion is a …

a. …type of artificial intelligence.

b. …VBA IDE feature.

c. …developer assistant.

d. …programming race.

11. Go to the Project Window and add two new Modules. What are their default names?

12. You are testing out some programming features and decide to use the Immediate

Window to test your functions. What is wrong with the following code?

a. Debug.Print (newFunctionTest 1)

b. Print “This May “; “ be my last chance “ +_ “to get this right”

c. Dim ab As String

d. Ab = Array(“a”, 3)

print Ab(2)

13. Why might the Project explorer window not have a form’s module?

14. Open a form in design view and click back into the Navigation Pane Why can’t you

change the form’s name?

15. The Line Continuation Character is a what?

a. An actor.

b. An overstatement.

c. A space followed by an underscore.

d. A VBA bloodline.

16. Procedural View or Full Module View? Which allows an overview of the code in the

VBA IDE?

17. Embedded Macros are not available in the Navigation Pane. Why?

18. Why are Microsoft Office Access Class Objects Modules not visible in the Navigation

Pane?

19. By default functions and procedures in a Standard Module are…

a. Private

b. Public

c. Protected

d. static

20. True or False? It is only possible to convert stand-alone macros in VBA.

02 - Objects, Properties and Methods

Learning Objectives

After you have finished reading this unit you should be able to:

 Say what an object is

 Say what a property is

 Say what a method is

 Say what a collection is

 Understand how to reference objects

 Understand how to reference properties

Objects

VBA is an object based language and can interact seamlessly with Access objects (along with

objects from other Office programs such as Excel and Word). In the physical world objects

are things like tables, cars and people and in the VBA world objects are things like Tables,

Queries, Forms, Reports, RecordSets, Buttons, Combo-Boxes, List-Boxes, Text-Boxes,

Charts, etc.

The secret to programming with an object based language is to understand how to

manipulate these objects by taking advantage of their properties and methods.

Properties

Properties are said to be attributes of the objects they are attached to. As stated, command

buttons are an object in VBA and contain various properties including the BackColor

property, the Caption property, the Left property, the Top property and the ForeColor

property. These are all attributes of the command button and help us to define various

aspects of its appearance and behaviour.

With the properties listed above we can:

 Determine the color of the Command button (BackColor property)

 Determine what text is displayed in the Command button (Caption property)

 Determine how far from the left of the form or report the Command Button lies (Left

property)

 Determine how far from the top of the form or report the Command Button lies (Top

property)

 Determine the color of the text in the Command Button (ForeColor property)

In Figure 2.1 a button has been added to a form. We have manipulated a few of the

properties listed above and because of this we can say that:

 The Back-Color property is set to Accent 2, Darker 25%.

 The Caption property contains the text This is a caption.

 The Left property contains the value 1.998 cm

 The Top property contains the value 1.998 cm

 The ForeColor property contains the value Background 1

Figure 2.1

Using the property sheet feel free to change the values of certain properties for the Command

Button in order to see how they affect the appearance and behaviour.

Note
In Layout or Design view on a form or report, if you can’t see the property sheet go to the
Design Tab in the Ribbon and then click the Property Sheet Button. (Alternatively, just
press F4).

Figure 2.2

Methods

Methods can be described as actions that an object can perform. Objects such as Forms,

Reports and Command Buttons don’t have a lot of methods that they can perform so we will

be introducing something called the recordset object to give you a feel for methods.

The Recordset object

We will be dedicating a whole unit to the Recordset object later on in the course but for now

we will be providing a brief overview of the Recordset object, its properties and crucially its

methods.

The Recordset object allows us to open a table or query in memory (which means we can’t

see it) and add, modify and delete records. Used with a For Loop (explained in a later unit) it

is a powerful tool to help us to manipulate data.

Figure 2.3

In Figure 2.3 we open up a recordset for a table we have stored called “tblStudents”. We now

have that table definition in memory and can loop through each record and update it if we

wish.

We are asking Access to locate the record for a student whose last name is “Ramos” and then

change the last name to “Dos Santos”.

In order to achieve this we have to use certain methods associated with the Recordset object

including:

 Movenext – Moves to the next record.

 Edit – Ensures the record can be modified.

 Update – Writes any updates to the record.

These are all methods of the Recordset object and thus are defined as “actions that the

recordset can perform”.

Note
We cover Branching, For Loops and the Recordset object in great detail later on in the
course. Figure 2.3 is merely intended to provide you with an overview of how we use
methods in VBA.

Collections

As we have stated forms, reports, queries and tables are all objects in an Access database. But

normally we have more than one of each. We may have a table for students as well as a table

to store courses, classes, teachers, etc. In the VBA environment we have the ability to refer to

sets of objects of the same type using collections.

Collections are literally collections of objects of the same type (for example, there is a Forms

collection and a Reports collection but not a Forms and Reports collection) and have their

own properties and methods.

An example of a common property in a collection is the Count property. We use this to
return the number of items in a collection. The Forms collection is highlighted in red.

1

2

3

4

5

6

7

8

9

10

11

12

13

Public Function IsLoaded(strFormName As String) As Boolean

Const conFormDesign = 0

Dim i As Integer

IsLoaded = False

For i = 0 To Forms.Count - 1

 If Forms(i).FormName = strFrmName Then

 If Forms(i).CurrentView <> conFormDesign Then

 IsLoaded = True

 Exit Function

 End If

 End If

Next

End Function

Figure 2.4

In Figure 2.4 we use the form collection and the count property to help us ascertain whether
a particular form is loaded. We refer to the Forms collections as Forms and the Count
property as Forms.Count.

Note
We cover Collections, Functions, For Loops and the If statement in great detail later on in
the course. Figure 2.4 is merely intended to provide you with an overview of how we use
collections in VBA.

Objects, Properties and Methods – An Analogy

Most people tend to understand that if you want to change the text in a command button you

use the Caption property and if you want to change the back color you use the BackColor

property. It almost seems like killing a fly with a nuclear bomb to explain objects, properties

and methods when, in truth, they can be quite intuitive. There is, alas, an ulterior motive

behind these machinations!

The concepts surrounding object based languages and programming mean that it is very

important that programmers are not only able to use objects, properties and methods but are

also able to understand the thinking behind them.

Note
Taking some time now to really get to grips with these ideas will pay dividends in the

future. (You may have to trust us on that one for now!)

So, as with all courses that deal with objects, properties and methods we present an analogy!

And for this particular analogy we shall be using a car!

Figure 2.5

Cars are objects. Cars can contain other objects like a Wheel object and a Bonnet object.

These objects can contain other objects themselves such as a Tire object for the Wheel object.

VBA works much the same way. A Form object can contain a Command Button object or a

Combo-Box object or a Text-box object. And just as a Form is part of a collection, so too can

controls be part of a collection.

Taking the car analogy a little further we can make some observations about the car in Figure

2.5:

 The Car Object contains a Door Object.

 The Door object is part of a collection (Doors).

 The count property of the Door object is 2 (There are 2 doors).

 The Door object has a Color property.

 The Color Property of the Door object is set to Orange.

 The Door object contains a Window object.

 The Window object has a Broken property.

Window Object

Door Object

Bonnet Object

Wheel Object

 The Broken property of any of the Window objects in this Car object is set to False

(None of the windows are broken).

 The Car has a Drive Method.

Get the idea? Objects are things that have attributes (properties) and things they can do

(Methods).

Programming with Objects

Parent and Children Objects

In Figure 2.6 we have created an object of type form and saved it (this form is in the

downloadable Access content).. We have added three control objects to the form (2 buttons

and a text-box), changed some properties, and saved the form with its new objects. The

control objects are children of the form, whilst the form is the parent of the control objects.

Figure 2.6

Figure 2.7

Accessing Objects and Properties, Me, the . (dot) Operator and !(exclamation)

We are going to get a message box to appear displaying the text “Hello World!” after clicking

on the cmdMessage button. Here’s how we do it:

 Right-Click on frmHomeTest and choose design view from the drop-down box.

Figure 2.8

 Display the Property Sheet (Press F4).

Form
(parent)

cmdChangeColour
(child)

txtMessage
(child)

cmdMessage
(child)

Figure 2.9

 Click on cmdMessage in the combo-box.

Figure 2.10

 Go to the Event Tab on the Property Sheet.

 Figure 2.11

 Click on the ellipsis (the 3 dots on the far right) of the On Click Event.

Figure 2.12

 Choose Code Builder.

Figure 2.13

 The shell of a sub-procedure called cmdMessage_Click() will have appeared.

Figure 2.14

 Write Msgbox “Hello World!” on the line below cmdMessage_Click().

Figure 2.15

If we go back to frmHomeTest and change it Form View we can then click on cmdMessage

and the following picture will be displayed:

Figure 2.16

We have created an OnClick event for the cmdMessage button and when we press it a dialog

box appears that contains the text string “Hello World!”. This text string has been hard-

coded. This means that in order to change the value “Hello World!” we need to alter the

code that was written. Sometimes hard-coding is a good thing (as end users don’t have access

to the code and cannot change certain things) but other times you will want the end users to

be able to change certain values. We are going to show how you can get the dialog box to

display whatever you write in the txtMessage text box and how these objects can be

referenced. But first a quick explanation of how the Msgbox object works.

When you write “MsgBox” and press the space bar once, a yellow box appears listing all the

arguments that you can use. This “guide” that VBA provides you with is called intellisence

and is a very useful feature.

Note
We will be covering arguments in greater detail later on in the course. For now, think of
arguments as things that VBA needs to know to perform certain actions or would like to
know (if they are optional). With regards to the msgbox object, VBA needs the Prompt
argument (the actual message) otherwise it won’t have anything to display!

Figure 2.17

 MsgBox(- the open bracket indicates that this object takes arguments.

 Prompt is a text String to be displayed.

 [Buttons As VbMsgBoxStyle = vbOkOnly] – We use this optional argument to let

VBA know what kinds of buttons we want. The default is the OK button.

 [Title], [HelpFile] and [Context] As VbMsgBoxResult – are [optional] and are Strings

which we will not concern ourselves with for now.

So the msgbox object will display a text string as the message. In our case we have added a

string called “Hello World!” But we don’t have to provide the MsgBox object with a literal

string. We can reference an object or variable that contains a string and use that. In other

words we can write something in txtMessage and get the msgbox object to display that.

Here’s how we do it:

 Delete the line MsgBox "Hello World!"

 Write MsgBox and the press the space bar.

 Write me. (not in quotation marks – make sure to include the dot).

 When the yellow box appears write txt.

 You should immediately jump to txtMessage (as indicated below).

 Choose txtMessage.

 Write .Value (don’t forget the dot).

Figure 2.18

A couple of points on Figure 2.18.

 “me” – Refers to frmHome1. We are actually writing inside frmHome1 which is why it

is highlighted in the Project Explorer.

 . (dot) – to get the controls we’ve added to the form. We can use the . (dot) operator

to bring up a list of Properties of the “me” object. When we dragged the command

buttons and textbox onto the form they were added to the Form’s list of Properties,

and we set the Property’s name to txtMessage by changing its name in the Properties

window.

Now to test it.

Navigate back to the
Form Designer, change
the mode to Form
View.

Enter “Hello World
Again!” into the
textbox and click on
txtMessage.

There it is!

Figure 2.19

Change the text in txtMessage and that is what will appear in the dialog box everytime you

press cmdMessage.

Note
Although you can use the dot operator as in Me.txtMessage.Value strictly speaking this

should be Me!txtMessage.Value (notice the use of the explanation mark instead of the dot

operator). It is good practice to refer to objects with the exclamation mark and properties

and methods with the dot operator.

However, if you don’t do that the world will keep on spinning.

Changing an Object’s Properties – textbox background colour

To demonstrate the changing / mutating of an object’s properties we are going to do two

extra tasks.

1. Change the text on the other button.

2. Change the colour of the textbox background colour.

 Navigate back to the frmHome1 and change it to design view.

 Click on the other command button we called cmdChangeColour.

 On the Property Sheet click events and click the ellipses of the On Click event.

 You should have something that looks like this:

Figure 2.20

In the cmdChangeColour_Click() sub do the following:

 Type Me.cmd and find cmdChangeColour

 Put the .(dot) operator

 And find the property Caption

Figure 2.21

Caption is the text that appears in the command button and it’s this property we want to set.

 After caption put an “=” sign followed by the string “I Changed the Color!”

Figure 2.22

On the next line then we will update the background colour of the textbox object.

 Write Me.txtMessage.Value = VbRed

Figure 2.23

Now go back to the form in Form View, click the button and it should look like this:

Figure 2.24

Questions

1. Which of these are objects and which are properties:

a. Command Button

b. BackColor

c. Form

d. Combo-Box

e. Left

f. Caption

2. Under what tab is the property sheet on the Ribbon?

3. What shortcut key do you press to bring up the property sheet?

4. Which property determines the color of the text in a command button?

5. Is Movenext a property or method of the recordset object?

6. What does the Count property of a collection tell us?

7. Using the car analogy for objects, properties and methods what category would the

color of a tire fit into? Object or property. What object would own that color of a tire.

8. Create a blank form and name it frmObjects. Create a button for the form and name

it cmdObjects. What is the relationship between frmObjects and cmdObjects?

9. What property do you change to display the text “This is a button” in the button?

10. How do you create a sub called Private Sub cmdObjects_Click()?

11. Add a text box and name it txtObjects. What code do you need to write in Private Sub

cmdObjects_Click() to change the Back Color of the text box to vbBlue?

12. When can you use an exclamation mark after the keyword Me?

Answers – The VBA Editor, Converting Macros

1. MsgBox doesn’t request a user’s input

The line continuation characters are next to the commas, no whitespace

2. a) After Update, b) mouse down, c) detail, d) Detail,

e) how the form reacts when one is in the last field and tabs once more

3. True or false

a. False

b. False

c. True

d. False

e. False

f. True

g. False

h. True

4. a) right click on module in project windows and rename

b) f2 the module in the navigation panel

5. (b)

6. A camel

7. Multiple answers

a. Textbox

b. Integer

c. Combobox

d. Label

e. Long

f. String

g. Form

h. Query

i. Macro

j. Class

8. Click Convert Form’s Macros to Visual Basic

9. True or false

a. True

b. True

c. False

d. False

e. True

f. False

g. True

h. True

i. True

j. False

k. False

10. (b) and (c)

11. Module 1 and Module 2 or a similar consecutive numeration

12.

a. Print is not a function

b. +_, _ should not be there

c. Dim is not allowed in the immediate window

d. Ab(2) is out of bounds, valid values would be 0 or 1

13. Because a form has no module yet.

14. Because the form is open. Forms must be closed to rename.

15. (c)

16. Full Module View.

17. Because they are embedded into a form or report, their parent is the form.

18. Because they are children of their parent form.

19. Public

20. False

Answers – Objects, Properties and Methods

1. The objects are: a,c and d. The properties are b, e and f.

2. The Design Tab.

3. F4.

4. ForeColor.

5. Method.

6. The number of objects within that collection.

7. The color of a tire would be the Color property of the Tire object.

8. frmObjects is the parent object and cmdObjects is the Child Object.

9. The Caption property.

10. The steps to create Private Sub cmdObjects_Click()

a. Make sure the form is in design view.

b. Bring up the property sheet.

c. Click on cmdObjects or choose cmdObjects from the drop-down box in the

property sheet.

d. Go to the event tab.

e. Click on the ellipsis on the far right of the On Click event.

f. Choose Code Builder.

11. Me.txtObjects.BackColor = vbBlue or Me!txtObjects.BackColor = vbBlue

12. When you wish to refer to an object that is the child of the form or report me refers

to. E.g. Me!txtObjects (txtObjects is an object).

