

VBA Made Easy

Access VBA

Fundamentals
Level 3

www.AccessAllInOne.com

1 | P a g e

This guide was prepared for AccessAllInOne.com by:
Robert Austin

This is one of a series of guides pertaining to the use of Microsoft Access.

© AXLSolutions 2012
All rights reserved. No part of this work may be reproduced in any form, or by any means,
without permission in writing.

2 | P a g e

Contents
05 - Functions, Sub Procedures And Arguments .. 5

VBA Language in Context .. 5

What is a Sub Procedure? .. 5

What is a Function? ... 6

Calling Sub Procedures And Functions From The Immediate Window................................ 6

Calling Sub Procedures from other Sub Procedures .. 8

Calling Functions ... 9

Built-in Functions .. 10

Using Expression Builder ... 10

Commonly Used and Useful Built-In Functions .. 13

String Functions ... 13

Conversion .. 13

Date and Time Functions ... 14

Is Functions .. 15

Custom Functions And Sub Procedures .. 18

Anatomy of a Sub Procedure .. 19

Anatomy of a Function ... 21

Declaring Functions and Procedures ... 22

Scope ... 22

Declarations in a Module and Global Scope (and a little private-cy) 22

Declarations in a Form or Report Modules .. 25

Exercises ... 26

Answers .. 47

06 – Debugging ..30

Learning Outcomes ... Error! Bookmark not defined.

Break on Unhandled Errors ...30

Breakpoints .. 32

Debug Control Bar ... 33

Immediate Window .. 34

? and Debug.Print ... 34

: to concatenate commands .. 34

; to concatenate strings ... 34

Note .. 34

Call a Procedure .. 35

Immediate Window is in Scope .. 35

3 | P a g e

Code Window Pop-ups ... 36

Watches Window.. 37

VBE Editor Options .. 38

Compilation Explained ... 40

Advanced Compilation and ACCDE .. 40

ACCDE files ... Error! Bookmark not defined.

Why use an ACCDE file?... 42

Multi-Users Environments .. 42

Questions .. 44

4 | P a g e

5 | P a g e

05 - Functions, Sub Procedures And Arguments
In this unit you will learn what Functions, Sub Procedures and Arguments are.

VBA Language in Context

The core of the English language is its sentences and paragraphs. The sentence describes

some action (verb) that is performed on or by an object (noun), and a paragraph is a set of

sentences communicating some overall desired goal or aim. VBA is not unlike English in this

sense.

VBA’s paragraphs are called Procedures and Functions. Sentences then are the variables,

operations, object methods and assignment statements in the Code Block. All recent

programming languages share this same structure. To continue the analogy, functions and

procedures (the paragraphs) are contained within books called VBA Modules. There are

three types of book, or module:

 Forms and Reports Module (Microsoft Office Access Class Object Modules); or,

 Standard Modules.

 Class Modules;

When you write your code it will always be written within a Function…End Function or a

Sub…End Sub statement. VBA is what is known as a functional programming language. That

is, we cannot just write code within a standard module and expect it to run; Access won’t

recognise this and will complain terribly, we must put Sub or Function around it.

What is a Sub Procedure?

You may not realise it but you have already used sub procedures in this course. Do you

remember this sub procedure from the unit on Variables?

Figure 5.1

In this sub procedure you may notice that all the code is held within the Sub
getPriceIncVAT()
and the End Sub statements. These are the outer limits of the sub procedures and any code
that comes before Sub getPriceIncVAT() and after End Sub do not form part of the sub
procedure

1

2

3

4

5

6

7

8

9

10

11

12

Sub getPriceIncVATSub()

Dim ItemPrice As Double

Dim SalesTax As Double

Dim PriceIncVAT As Double

ItemPrice = InputBox("What is the price of the item?")

SalesTax = InputBox("What is the tax? (20%=0.2)")

PriceIncVAT = ItemPrice + (ItemPrice * SalesTax)

MsgBox ("The price of the item including VAT is: $" & PriceIncVAT)

End Sub

6 | P a g e

What is a Function?

Functions are not dissimilar to sub procedures in that they do something but where they
differ is that they also return a value.

Figure 5.2

In Figure 5.2 we have changed the sub procedure into a function and it is now returning a
value.

Note
Please only take into consideration the structure of the function as we will be covering the
syntax in greater detail later on in this unit.

Calling Sub Procedures And Functions From The Immediate Window

One of the benefits of the immediate window is that we can use it to test sub procedures and
functions.

Figure 5.3

Take a look at Figure 5.3 where we have 2 very simple sub procedures and 1 very simple
function.

In order to call the procedure CallSubFromImmediateWindow using the immediate window
we merely need to write its name (without the parentheses).

1

2

3

4

5

6

7

8

Function getPriceIncVATFunction(ItemPrice As Double)

Dim SalesTax As Double

Dim PriceIncVAT As Double

SalesTax = 0.2

getPriceIncVATFunction = ItemPrice + (ItemPrice * SalesTax)

End Function

7 | P a g e

Figure 5.4

This will cause a message box to pop it that states “It works!”

We can also add arguments in the immediate window. In the second sub called
CallSubFromImmediateWindowWithArgs we need to pass a value i. We do this by writing
the name of the procedure and then adding the necessary argument to the right.

Figure 5.5

In Figure 5.5 we call CallSubFromImmediateWindowWithArgs and provide the argument i.
In this case we pass the value 5 and a message box will pop up with the value 5 in it.
Whatever we change the value of the argument to, will be reflected in the value that the
message box displays.

We can also test functions. Remember that functions are essentially the same as sub
procedures with the difference that they return a value.

Figure 5.6

To test a function from the immediate window we use a question mark and then we write the
name of the function. We follow the function with parentheses and any relevant arguments
are placed inside the parentheses. We have done this in Figure 5.6.

8 | P a g e

Figure 5.7

Figure 5.7 shows that if we provide 5 as an argument for this particular function we get a
value returned of 15. Try adding different values as the argument to see what return value
you get.

Calling Sub Procedures from other Sub Procedures

One of the most important features of VBA is the ability to call sub procedures from other

sub procedures. What do we mean? Take a look at this code to find out:

Figure 5.8

In Figure 5.8 we have 4 sub procedures Main, getName, getAge and printDetails. The main
sub procedure we have cleverly called Main and this sub procedure calls all the other sub
procedures within the module. It first calls getName which has the objective of asking the
user’s name. This value is then assigned to strName which is a module level variable. Next,
getAge is called which involves another input box asking you for your age and again the value
is stored in a module level variable called strAge. Finally printDetails is called which takes
the 2 module level variables and concatenates them in a string which is printed in the
immediate window.

9 | P a g e

In Figure 5.9 below we call the sub Main from the immediate window by writing Main and
pressing the return key and then provide Steve and 25 as the values for the variables.

Note
Breaking code down into manageable chunks and having a main procedure that calls other
procedures (and functions) is an excellent way to code.

Figure 5.9

Calling Functions

Figure 5.10 has the same concept (you are asked for your name and age which are printed in
the immediate window) but this time we are using 1 sub procedure (Main) which is calling
functions. As functions return values it is those that are used as the basis for the
concatenated string at the end.

10 | P a g e

Figure 5.10

Using functions is another great way to break down your code into manageable bits. In the
previous example we wrote custom functions but VBA has plenty of built-in functions all of
its own.

Built-in Functions

VBA has a wide library of built-in functions. Do look through them and do experiment with

them. Most puzzles you try to overcome and actions to be fulfilled can be performed by

using these functions, so try not to reinvent the wheel.

Using the Query Expression Builder to locate functions

As there are scores of built-in functions in Access/VBA, wouldn’t it be great if we had an

easily accessible list that listed not only the functions but also their uses. Well, rest assured,

we do (kind of). We can use the expression builder in a query to perform this particular

function (do you like what we did there?)

11 | P a g e

Opening the Expression Builder

In the main Access window click on
the Query Design button which can
be found in the Queries group of the
Create tab of the Ribbon.

Dismiss the Show Table Dialog Box.

Click in the Field row in any column
in the field designer window.

12 | P a g e

Click on the Builder button which is
located in the Query Setup group of
the Design tab of the Ribbon.

The Expression Builder dialog box
will pop up.

Open the Functions Node (1) in the
Expression Elements window and a
list of all functions will be displayed.

If you click on one of the functions in
the Expression Values window (2)
you will get a brief explanation of
what is does (3).

Clicking on the hyperlink text of the
function syntax (4) will open up a
more detailed explanation of the
function in a browser window.

Figure 5.11

1
2

3

4

13 | P a g e

Commonly Used Built-In Functions

This section will provide you with examples of commonly used built-in functions

String Functions

 Len(s) – returns the length of String s.

 Left(s, n) – returns a substring of s that is n chars long from the left of the string s.

 Right(s, n) – returns a substring of s that is n chars long from the right of the string s.

 Mid(s,nb,ne) – returns a substring of s from characters nb to ne, inclusive.

1

2

3

4

5

6

Sub testStrings()

 Debug.Print Len("Hello World")

 Debug.Print Left("Hello World", 10)

 Debug.Print Right("Hello World", 7)

 Debug.Print Mid("Hello World", 7, 10)

End Sub

 Output in immediate window:

11

Hello Worl

o World

World

Figure 5.12

Conversion

 CInt(anything) – converts anything into an Integer type (if possible).

 Cdbl(anything) – converts anything into an Double type (if possible).

 Clng(anything) – converts anything into an Long type (if possible).

 CStr(anything) – converts anything into a String.

 CDate(string) – converts a string to a Date type (if possible).

If any of the conversion functions are passed a variable that cannot be parsed – e.g.

CInt(“oioi!”) – a Type Mismatch error occurs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Sub testConversions()

 Dim i As Integer, d As Double, l As Long, s As String

 i = 19

 d = 12.6

 l = 32768

 s = "42.001"

 ' to display the answers provided by the conversion functions we have to

‘CStr() all the number variables or VBA will throw a Type Mismatch error

 ' so just to prove that CStr works we'll do it first

 Debug.Print "First test CStr on all types"

 Debug.Print "CStr(i) = '" + CStr(i) + "'" ' '42'

 Debug.Print "CStr(d) = '" + CStr(d) + "'" ' '42.001'

 Debug.Print "CStr(l) = '" + CStr(l) + "'" ' '42'

 Debug.Print "CStr(s) = '" + CStr(s) + "'" ' '42.001'

 Debug.Print ""

 Debug.Print "Second, CInt"

 Debug.Print "CInt(i) = " + CStr(CInt(i)) ' 19

 Debug.Print "CInt(d) = " + CStr(CInt(d)) ' 13

 Debug.Print "CInt(l) = Overflow Error. Integers are valued <32768"

 Debug.Print "CInt(s) = " + CStr(CInt(s)) ' 42

 Debug.Print ""

 Debug.Print "Third, CDbl"

 Debug.Print "CDbl(i) = " + CStr(CDbl(i))

14 | P a g e

24

25

26

27

28

29

30

31

32

 Debug.Print "CDbl(d) = " + CStr(CDbl(d))

 Debug.Print "CDbl(l) = " + CStr(CDbl(l))

 Debug.Print "CDbl(s) = " + CStr(CDbl(s))

 Debug.Print ""

 Debug.Print "Fourth, CLng"

 Debug.Print "CLng(i) = " + CStr(CLng(i)) ' 19

 Debug.Print "CLng(d) = " + CStr(CLng(d)) ' 13

 Debug.Print "CLng(l) = " + CStr(CLng(l)) ' 32768

 Debug.Print "CLng(s) = " + CStr(CLng(s)) ' 42

End Sub

 Output in immediate window:

testConversions

First test CStr on all types

CStr(i) = '19'

CStr(d) = '12.6'

CStr(l) = '32768'

CStr(s) = '42.001'

Second, CInt

CInt(i) = 19

CInt(d) = 13

CInt(l) = Overflow Error. Integers are valued <32768

CInt(s) = 42

Third, CDbl

CDbl(i) = 19

CDbl(d) = 12.6

CDbl(l) = 32768

CDbl(s) = 42.001

Fourth, CLng

CLng(i) = 19

CLng(d) = 13

CLng(l) = 32768

CLng(s) = 42

Figure 5.13

Date and Time Functions

Date and time functions are quite complex due to the nature of dates. VBA has a special way

of handling dates by putting # around them, for example dMyDate = #18-Dec-2012#. Here

are some of the functions to help with dates.

 Date () – returns the current date.

 Now() – returns the current date and time.

 DateSerial(year, month, day) – returns a Date object if parameters are valid.

 Year(date) – returns the year of date as an integer.

 Month(month) – returns the month of date as an integer, 1-12.

 Day(Day) – returns the day of date as an integer, 1-31.

 DateDiff(interval, date, date) – date are dates, interval is day, month, year, etc.

 DateAdd(interval, number, date) – add to date intervals multiplied by number

15 | P a g e

Date Intervals

In the above interval refers to one of the following:

Interval Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

Figure 5.14

Note
The Date function returns the current date (as defined by your operating system) so the

results you get from the following example will be different from the results we obtained.

1

2

3

4

5

6

7

8

9

10

Sub testDateTime()

 Debug.Print Date

 Debug.Print Now()

 Debug.Print DateSerial(2012, 12, 18)

 Debug.Print Year(Date)

 Debug.Print Month(Date)

 Debug.Print Day(Date)

 Debug.Print DateAdd("d", 421, Date)

 Debug.Print DateDiff("d", Date, #1/1/2020#)

End Sub

 Output in immediate window:

27/12/2012

27/12/2012 22:50:08

18/12/2012

 2012

 12

 27

21/02/2014

 2561

Figure 5.15

Is Functions

When inspecting whether a variable has a value we usually use the equals = operator, but

equals does not work if a variable is null, empty or is nothing. Nor can equals be used to

interrogate the variable for its type. There are special ‘Is’ operators which provide for that

functionality.

 IsDate(anything) – returns true if variable is a date.

 IsArray(anything) – return true if variable is an array.

 IsNull(anything) – returns true if variable is Null.

 IsEmpty(anything) – returns true when type variable is uninitialized.

 IsObject(anything) – returns true when variable is an Object.

16 | P a g e

 TypeName(anything) – returns a string.

IsDate and IsEmpty

1

2

3

4

5

6

7

8

9

10

11

12

13

Option Explicit

Sub dateAndEmptyFunctions()

 Dim myDate

 Debug.Print IsDate(myDate)

 Debug.Print IsEmpty(myDate)

 myDate = #12/20/2012#

 Debug.Print IsDate(myDate)

 Debug.Print IsEmpty(myDate)

End Sub

 Output in immediate window:

False

True

True

False

Figure 5.16

Note
We will be covering arrays in a future unit.

IsArray and IsNull

1

2

3

4

5

6

7

8

9

10

11

12

Sub arrayAndNullFunctions()

 Dim myArray As Variant

 myArray = Array("first_name", "surname", "dob", "town", Null)

 Debug.Print IsArray(myArray)

 Debug.Print IsNull(myArray(0))

 Debug.Print IsNull(myArray(1))

 Debug.Print IsNull(myArray(2))

 Debug.Print IsNull(myArray(3))

 Debug.Print IsNull(myArray(4))

End Sub

 Output in immediate window:

True

False

False

False

False

True

Figure 5.17

17 | P a g e

IsObject and TypeName

1

2

3

4

5

6

7

8

9

10

11

12

13

Sub objectAndTypeNameFunctions()

 Dim varA, varB As Object, varC As Date, varD As DAO.Recordset

 Debug.Print

 Debug.Print "isObject(varA) = "; CStr(IsObject(varA)); Tab; "TypeName(varA) =

"; TypeName(varA)

 Debug.Print "isObject(varB) = "; CStr(IsObject(varB)); Tab; "TypeName(varB) =

"; TypeName(varB)

 Debug.Print "isObject(varC) = "; CStr(IsObject(varC)); Tab; "TypeName(varC) =

"; TypeName(varC)

 Debug.Print "isObject(varD) = "; CStr(IsObject(varD)); Tab; "TypeName(varD) =

"; TypeName(varD)

End Sub

 Output in immediate window:

isObject(varA) = False TypeName(varA) = Empty

isObject(varB) = True TypeName(varB) = Nothing

isObject(varC) = False TypeName(varC) = Date

isObject(varD) = True TypeName(varD) = Nothing

Figure 5.18

DFunctions – Database Functions

Sometimes it is necessary to retrieve certain data from the database - e.g. a manufacturer’s

name – or perform a quick count on records. Rather than having to create objects and write

SQL statements VBA offers a couple of smart and concise routines to obtain what you need

without all the object/SQL hassle.

All DFunctions have the same signature expression, table[, criteria] which is similar in

structure to SQL itself.

 DLookup (expression, table, [criteria]) – Looks up a value in a table or query.

 DCount (expression, table, [criteria]) – Counts the records in a table or query.

 DSum(expression, table, [criteria]) – Returns the sum of a set of records in a range.

 DMax (expression, table, [criteria]) – Retrieves the largest value from a range.

 Dmin(expression, table, [criteria]) – Retrieves the smallest value from a range.

 DAvg(expression, table, [criteria]) – Returns the average set of numeric values

from a range.

 DFirst (expression, table, [criteria]) – Returns the first value from a range.

 DLast (expression, table, [criteria]) - Returns the last value from a range.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Option Explicit

Sub DFunctions()

 'These D-Functions will be using data from the teachers table

 Debug.Print DLookup("[LastName]", "tblTeachers", "[FirstName]='Anna'")

 'We are looking up a value in the [LastName] field of tblTeachers.

 'We are looking up states that the [FirstName] field must be equal to Anna

 Debug.Print DLookup("[Address]", "tblTeachers", "[FirstName]='Anna'")

 Debug.Print DCount("*", "tblTeachers")

 'The asterix (*) means that we are counting all the records in the table

 Debug.Print DCount("*", "tblTeachers", "[zippostal]='98052'")

18 | P a g e

15

16

17

18

 Debug.Print DMax("[City]", "tblTeachers")

 Debug.Print DMin("[Zippostal]", "tblTeachers")

End Sub

 Output in immediate window:

Gratacos Solsona

123 2nd Street

 9

 5

Salt Lake City

98004

Figure 5.19

Custom Functions And Sub Procedures

Having looked at built-in functions we are now going to create our own custom function.

Let’s write a function that calculates the age of a student given the date of birth. The details

we know are as follows:

 A returned value is needed, so we must use a function.

 The value returned will be somebody’s age, so we should return an Integer.

 The function needs to know the student’s DOB, so a Date parameter is needed.

 We also need a relevant function name; let’s call it calculateAge.

The signature of the function then is:

 Function calculateAge(DOB As Date) As Integer

End Function

We need a variable to store the age and to store today’s date:

 Dim iAge as Integer

 Dim dToday as Date

Figure 5.20

Now we need to know the difference between DOB and today’s date in years. VBA has a

function for that, DateDiff. Let’s set dToday to today’s date and use DateDiff to give us the

age in years.

 dToday = Date()

 iAge = DateDiff(“yyyy”, DOB, dToday) ‘ yyyy interval date

Figure 5.21

Finally, we also need to return iAge to the calling method by doing the following:

 calculateAge = iAge

Figure 5.22

19 | P a g e

The whole function now looks like this:

1

2

3

4

5

6

7

Function calculateAge(DOB As Date) As Integer

 Dim iAge As Integer

 Dim dToday As Date

 dToday = Date

 iAge = DateDiff("yyyy", DOB, dToday) ' yyyy interval date

 calculateAge = iAge

End Function

Figure 5.23

In the immediate window we call the function with a known anniversary date, e.g. today’s

date minus 1 year:

 Output in immediate window:

Print calculateAge (#19/12/2011#)

1

Figure 5.24

Let’s try with another known date, your own age:

 Output in immediate window:

? calculateAge (#15/11/1978#)

34

Figure 5.25

Note
The Date function returns the current date (as defined by your operating system) so the

results you get from the following example will be different from the results we obtained.

So, we know how to use sub procedures and functions. Let’s take a closer look at the syntax

of each one.

20 | P a g e

Anatomy of a Sub Procedure

In VBA the Sub keyword denotes a procedure. Procedures are designed to perform some

action.

The syntax of a procedure is:

Sub nameOfSub (arguments | optional arguments As Datatype[=defaultValue])

 [Code Block]

End Sub

nameOfSub – name of the sub procedure.

Arguments – are a list of values and types that are collected and used within the sub

procedure.

Optional arguments As Datatype[=defaultValue] – an argument may be optional and if it is

then you may provide a default value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

‘ Declarations of Procedures–syntax highlighting to aid understanding

‘ put this section in the module window

Sub DoNothing() ‘ basic procedure

 Msgbox “Do Nothing ”

End Sub

Sub DoNothing2(name as String) ‘ one argument provided

 Msgbox “the name is ” + name

End Sub

Sub DoNothin3(optional name as String) ‘ one optional argument

 Msgbox “The name is ” + name

End Sub

‘ one optional argument which defaults to Julia

Sub DoNothing4(optional name as String = “Julia”)

 Msgbox “The name is ” + name

End Sub

Sub DoNothing5(name as String, age as Integer) ‘ two arguments provided

 Msgbox “the name is ” + name + “ with age “ + CStr(age)

End Sub

 ‘ put this section into the immediate window

DoNothing ‘ Simple call

DoNothing2 “Julia” ‘ Julia displayed

DoNothing3 ‘ optional name left out, blank appears

DoNothing4 ‘ optional name left out but will default to Julia

DoNothing5 “Julia”, 32 ‘ two arguments

Figure 5.26

21 | P a g e

Anatomy of a Function

In VBA a Function is a Procedure that returns a value. Functions accept data through

arguments, they perform operations internally just like a procedure, but finish with a value

which may be returned by the function.

Function nameOfFunction (arguments | optional arguments As

Datatype[=defaultValue]) _

 As returnDataType

 [Code Block]

 [nameOfFunction = expression]

End Function

nameOfFunction – is the name of the function.

Arguments – are a list of values and types that are collected and used within the function.

optional [arguments] [=defaultValue]] – an argument may be optional and if it is then you

may provide a default value.

returnDataType – If stated, this is the value returned by the function, its data type.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

32

‘ Declarations of functions –syntax highlighting to aid understanding

‘ put this section in the module window

Function returnName1() ‘ basic procedure

 returnName1 = “returnName1 Called”

End Function

Function returnName2(name as String) as String ‘ return name

 returnName2 = name

End Function

Function returnName3(optional name as String) ‘ return name or Shaun

 If name=”” Then returnName3=”Julia” else returnName3=name

End Function

‘ one optional argument which defaults to Julia

Function returnName4(optional name as String = “Julia”)

 returnName4 = name

End Function

Function returnName5(name as String, age as Integer) ‘ two arguments

 returnName5 = “the name is ” + name + “ with age “ + CStr(age)

End Function

‘ put this section into the immediate window

Debug.Print returnName1()

Debug.Print returnName2(“Shaun”)

Debug.Print returnName3()

Debug.Print returnName3(“Shaun”)

Debug.Print returnName4()

Debug.Print returnName5(“Shaun”, 34)

Figure 5.27

22 | P a g e

Declaring Functions and Procedures

Above we’ve read about what the differences are between functions and procedures

Scope

As we have seen, it is possible to call functions and sub procedures from other functions and

sub procedures. But you can restrict which sub procedures and functions can be called. This

is known as the scope of a function or sub procedure and is dependent on the location in

which it is written and also the modifiers you put before the function or sub procedure name.

Possible modifiers are:

 Private - eg. Private Sub txtName_Click()

 Public - eg. Public Function getCustomerName() As string

 Nothing - eg Function isLeapYear() As Boolean

For all modules Private stops anything seeing the private function or sub procedure except

for other functions or sub procedures in the same module.

Putting Public before a method in a Standard Module, or putting nothing at all means that

the method is available anywhere in the application, its GLOBAL! The reason for this is that

Standard Modules are in global context.

Declarations in a Module and Global Scope (and a little private-cy)

In the example below we have a sub procedure and a function.

Figure 5.28

You can execute this function and sub procedure by entering their names directly into the

immediate window one after the other:

23 | P a g e

DoNothing

doSomething

debug.print doSomething()

-You will notice that DoNothing

displays a dialog box

-At line 2 doSomething() appears to do

nothing

-At line 3 printing the output of

doSomething() reveals the current time

Figure 5.29

In fact you can execute this function and sub procedure from anywhere in your application.

For example, navigate to the Module FromAnywhere and call CallFromHere from the

immediate window.

Figure 5.30

24 | P a g e

DoNothing

doSomething

debug.print doSomething()

-You will notice that DoNothing

displays a dialog box

-At line 2 doSomething() appears to do

nothing

-At line 3 printing the output of

doSomething() reveals the current time

Figure 5.31

To demonstrate scoping with the Private modifier, add Private to the sub procedure

DoNothing1 and the function doSomething1 and rerun the immediate window tests

Figure 5.32

.Now DoNothing does nothing, except give you the error below! Private in a module means

no VBA code outside the Module can see this sub procedure or function.

25 | P a g e

Figure 5.33

Declarations in a Form or Report Modules

In the Events unit you may have seen that all event subs created by the IDE are declared with

the Private modifier. Private ensures that it is not possible for code outside the Form to call

its own code. This is particularly important for Forms as executing any of the event

procedures could cause a modification of data! That is why all Event Procedures are Private.

In Form and Report modules only put that code which is unique and specific to that form or

report. You may include Public sub procedures if you need to give access to some

functionality unavailable by conventional mechanisms.

Forms and reports do not need to be open for public sub procedures to be called and

variables set or actions performed.

26 | P a g e

Exercises

1. Why would you want to use a function instead of a sub procedure?

2. Which one of the following signatures is valid for a function called

appointmentDate?
a. Function appointmentDate(customerID As Integer) As Date

b. Function Date appointmentDate(Integer customerID)

c. Sub appointmentDate(customerID As Integer) As Date

d. Date appointmentDate(Integer customerID)

3. The signatures below have been extracted from a Standard Module.

Which are available in Global scope?

a. Private Function getNewID() As Integer

b. Public sub updateCustomerName(id as Integer, name as String)

c. Function IsClass(text As String) As Boolean

d. Sub updateModificationDate(recorded As Long)

e. Private Sub GetNextRecord()

4. Match each DFunction on the left with its description on the right

a. DSum

b. DCount

c. DLookup

d. DMin

a. Returns the value of a field in a table
for which ID=20.

b. Ordered by invoice number the
function will return the smallest
numerical value.

c. Returns a value equal to the number
of records in a table.

d. For a table of invoices this function
will return the total value of all
invoices

5. Using the expression builder find the mathematical functions which do the following:

a. Calculates the square of a number.

b. Returns today’s date.

c. Returns the time now.

d. Returns the difference between two dates.

e. Converts a Boolean value to a string.

f. Returns true when an object reference is empty.

g. Returns false when a recordset field doesn’t have the value of null.

h. Gives back the aggregate sum value of a table’s tax field.

i. Converts a string into a date.

6. Which function returns the string value of a variable type?

27 | P a g e

7. Function giveMeTime(name As String) As Date

a. What is the return data type?

b. Is this a procedure or a function?

c. With time As Date can time=giveMeTime(“Mike”)?

d. Which of the following will give a compiler error

i. A = giveMeTime “Mike”

ii. giveMeTime “Mike”

8. Match the following String functions on the left with their description on the right

a. Mid(s, a, b)

b. Len(s)

c. Left(s, a)

d. Right(s, a)

e. InStr(1, s, c)

a. Gives the ending of a string from
character position A to the end

b. Returns a substring of a string

c. From the beginning returns a

smaller string from position n0
with length a

d. Searches for one string inside
another

e. Give a count of the characters in a
string

9. What does Now() provide you with that Date() does not?

10. What is the return value of Month(#29-February-2012#)

11. Write the following function called textAddNumber:

a. Parameters of myText and myNumber.

b. Returns a string equal to the text of myText with myNumber appended to the

end.

c. Such that “Your score is” and 13 returns “Your score is 13”.

12. Write the following procedure called calculate:

a. Parameters of a(integer), b(string), c(string)

b. Allocate a to houseNo, b to teleNum, c to Surname

c. Concatenate c+b+a to d

d. Write debug,print d

13. Using DLookup, write an expression that retrieves the [surname] of a [pupil] with

[id] of 1192.

28 | P a g e

14. Using DCount write an expression that counts the number of [students] with a

[telephone] number beginning with “555”.

15. Match the following date intervals with the description

Interval Description

d Weekday

h Year

m Month

n Day

s Second

w Minute

yyyy Hour

16. True or False (; a semi colon denotes a new line)?

a. IsDate(#05/11/2012#)

b. IsDate(#01:36:01#)

c. Dim var As Application; IsObject(var)

d. Dim foobar; IsEmpty(foobar)

e. Dim foo as String; TypeName(foo) =”String”

f. Dim bar as Object; TypeName(bar) = “Empty”

17. Write a function that, given an array (myArray) and an integer (i), returns the value

of the myArray element i

18. In which module would you place the following code? Answer a) Standard Module, b)

Form Module or c) Class Module.

a. A globally available function?

b. A procedure that can only be used by a form?

c. A procedure that operates on a form but is available outside the form?

d. A function that is specific to a class?

e. A class function that can only be used by the same class?

f. A procedure available to the whole project that minimises all windows and

opens the form MainMenu?

19. On a new form you place three buttons named btnButton1, btnButton2, btnButton3.

 When btnButton1 is clicked a message is displayed.

 When btnButton2 is double-clicked the form closes.

29 | P a g e

 When btnButton3 is clicked nothing happens.

 What has buttons 1 and 2 that button 3 doesn’t?

20. Read the following code

Sub DoNothing4(optional name as String = “Julia”)

 Msgbox “Morning Dave. My name is ” + name

End Sub

a. What does optional mean?

b. What is the default value of name?

c. What is the name of the method?

d. When the method is execute with the following values, what is the result?

DoNothing4 (“Hal 9000”)

30 | P a g e

06 – Debugging

In VBA when we write code, it often doesn’t work how we expect it to or we think it is

working fine but need to be sure before handing it over to a client. For this reason we use

debugging tools to enable us analyse our code whilst it is running.

Note
When writing code it is completely normal for it not to work as expected. Very few
programs work 100% error free (if any at all) and our job as coders is to eliminate major
errors and bullet-proof our code by making sure that any unforeseen errors are handled in
some way by the IDE and not just left to confuse the end user.

Break on Unhandled Errors

Before going any further it is important to make sure the option to break on unhandled

errors is on. We do this by selecting Options from the Tools tab:

Figure 6.1

 Select the General tab of the dialog box.

 Tick “Break On Unhandled Errors” in the “Error Trapping” Option box.

31 | P a g e

Figure 6.2

Ok, now we have done that we need to identify the difference between a handled error and

an unhandled error. We can never fully anticipate all errors that will occur so we need to

have a kind of safety mechanism to ensure that if errors do occur, they are handled

accordingly. When we write code that achieves this we are handling errors.

In this first example we have an error because we are trying to divide 5 by 0. This is a

common error that occurs in VBA. The code can be found in the “06_Debugging” module of

the accompanying Access file. Test the code and see what happens. An ugly dialog box

appears and gives us some information which may be useful to a developer but not to an end

user.

1

2

3

4

Sub unhandledError()

Dim i As Integer

i = 5 / 0

End Sub

Figure 6.3

In the second example we have included an error handler. The snippet of code that says On
Error GoTo error_handler tells the IDE that if an error is encountered the code should
immediately jump to the section entitled error_handler: where we have some lines of code
that bring up a much more informative and instructional dialog box (that we created and can
modify to suit our means).

32 | P a g e

1

2

3

4

5

6

7

8

9

10

11

Sub handledError()

On Error GoTo error_handler

 Dim i As Integer

 i = 5 / 0

Exit_Sub:

 Exit Sub

error_handler:

 MsgBox "There has been an error. Please try running the code again

or reloading the form."

 Resume Exit_Sub

End Sub

Figure 6.4

Error handling such as this is typical in VBA code and is the mark of a bullet-proofed

application.

Breakpoints

A breakpoint is a marker one places on the code and at which point execution breaks and

stops to allow the debugger to operate. There are many cases when such an activity is really

useful.

Say you have a long calculation and you know there’s an error in it but don’t know where. By

clicking on the column where the red dot is displayed below, the row will become highlighted

indicating a breakpoint. Once the breakpoint is reached the code is paused and the VBA

editor has gone into debug mode.

Figure 6.5

Debug mode in the VBA editor isn’t much different to normal mode except that the debug

control bar’s controls are enabled and you can see a yellow line indicating the line of code

waiting to be executed. In order to resume executing code from this point, press F5. If you

would like to step through the code one line at a time you can press F8.

Figure 6.6

33 | P a g e

Debug Control Bar

The debug toolbar is your next companion in battle. When this bar is active it allows you to

step through your program and examine it in great detail.

Figure 6.7

The Play button tells the executive to continue running form the line that is
currently highlighted.

If the debugger isn’t yet engaged you can pause the execution and enter debug
mode immediately.

Stop forces an immediate cessation of execution and the call stack to be cleared.

The hand toggles a breakpoint on current line.

On a line which contains a user-defined function the Step-In follows execution
into the next function or procedure.

Or rather than stepping into the function on can jump over the function, allowing
it to execute as needed, and take up debugging once the sub-method has finished.

Step out tells the debugger to continue executing the rest of the current
procedure until it completes.

Displays the Locals Window which displays all local variables in use and their
values.

Toggles the visibility of the immediate window.

Toggles the Watches Dialog box. This box is navigable allowing you to drill down
into all local variables currently in use and inspect them in minute detail.

Quick Watch creates a quick watch item using the currently selected variable.

Call Stack displays a list of functions and procedures that have lead up to this
point and will be returned to.

Figure 6.8

34 | P a g e

Immediate Window

As mentioned before the immediate window is fantastic for testing code snippets, but it can

also be used as a great debugging tool. Here are a few simple commands:

 Debug.print “Hello World”

Print “Foobarbar”

? “bar foo foo bar bar

Figure 6.9

? and Debug.Print

Although we use these 3 methods to print from the immediate window we must use

Debug.Print when inside the code window.

: to concatenate commands

Another shorthand notation is “:” which allows multiple commands on one line. As the

Immediate Windows doesn’t execute commands over several lines – just one line – you can

use “:” to overcome this limitation. So now looping and conditionals structures are available

to you:

 Debug.print “Hello World”: print “Foobar”: ? “barfoo”

For t=1 to 10: ?t:Next

T=True: if T then ?”It’s true”: else : ?”it’s false :(”

T=False: if T then ?”It’s true”: else : ?”it’s false :(”

Figure 6.10

; to concatenate strings

Just like in the Code Window you can also use”;” to concatenate Strings together rather than

“+”.

Note

You cannot use the “Dim” keyword in the Immediate Window. The good news though is that

this is because it is not required; just assign values to variables as required.

‘ this will not work

Dim t As Integer: For t=1 to 10: ?t:Next

‘ this will work

T=0 : For t=1 to 10 : ?t : Next

Figure 6.11

35 | P a g e

Call a Procedure

To execute a procedure you need only type its name. If you want to highlight the fact and

document that you are actually calling a procedure and function you use the word Call before

the method’s name. One note of caution, when trying to call a function, Call does not return

any values and will give an error if you try to capture a function’s return value. Call only calls

a function as if it were a procedure.

 Public Function testAA() As String

 testAA = “done”

End Function

‘ this will not work

Call testAA()

Call (testAA)

A = call(testAA)

‘ this will work

call testAA

a=testAA()

testAA

Figure 6.12

Immediate Window is in Scope

Commands you type in the Immediate Window are executed immediately and in scope. If

you are not debugging, the window will operate at Global Scope; if you are debugging, the

window operates at that function or procedure Scope.

And a final comment to make; when working in the Immediate Window any code you write

using variables of the code being debugged will cause the program’s variables to be changed.

This is a highly desirable feature to help resolve bugs.

36 | P a g e

Code Window Pop-ups

In this example we are auto-generating an
error. The line that says Error 9 will
generate:
“Subscript out of range”. But we are using
an error handler to enable us to “trap” the
error.

In this simple procedure “a” has been
assigned the value of 10. At the debugged
statement (the red and yellow line) the code
has halted. Place the curser over any of the
variables in the procedure and the value will
be displayed in a hint. This is very useful
when reading code as it is a quick way to
determine the values of any variables.

In the immediate window below we’ve also
added the statement:
?a which prints 10.

Figure 6.13

Here we have placed a break point on the
line that reads Debug.print “post error”.
The code has halted execution and now we
will use the immediate window to
manipulate the variable “a”.

In the immediate window we’ve assigned the
value 21 to “a” and printed it out to verify
this has happened. Next we placed the
curser over the variable “a” and the IDE tells
us the variable’s value in situ, a=21.

Figure 6.14

37 | P a g e

Watches Window

Figure 6.15

The Quick Watch feature and Watches Window allows us to see a set of variables without

having to place the curser over anything or type anything in the immediate window.

To add a watch to the Watches Window
highlight the variable you want to watch (“a”
in this case) and click the Quick Watch
button or Shift+F9.

Figure 6.16

Above you can see that “a” is now in the Watches Window, displaying its value, type, context

and other details. When you bug out of the procedure “a” will become <Out of Context>.

38 | P a g e

VBE Editor Options

VBA has a concise set of options and tools which you can set to change behaviour of the

editor and debugger. All are useful tools to help make coding easier and quicker for

developers.

To access the Editor Options click on the
Tools menu and select Options…

Figure 6.17

Figure 6.18

 Auto Syntax check – check as you type syntax checker.

 Require Variable Declarations – this adds “Option Explicit” to the top of all
modules and is a good to always have ticked.

39 | P a g e

 Auto List Members
The . dot operator allows you to access
members / properties / fields of an object.

Here DoCmd members are shown. This is a
feature of the IDE and can be done on any
object or class.

Figure 6.19

 Auto indent

Auto indent option forces the Editor to
indent your code which makes ascertaining
the beginning and end of nested methods
easier.

In the image to the right there is a For…Next
loop and because the inner code block is
indented it is easy to make out what is being
executed and when.

Figure 6.20

 Break On All Errors (General Tab)
This option tells the debugger to break execution and let the programmer see the debugger
and investigate what’s happening on ALL errors (handled or otherwise). If this option is not
checked the debugger will not cut in and the program is left to perform default actions based
on the nature of the error.

 Compile On Demand (General Tab)
Compilation is an operation that converts our VBA into executable code. Compile On
Demand should generally always be on, and will be executed by the IDE or the module
compiled when a function or procedure held within is required.

 Auto-Quick Info (Editor Tab)
Quick information enables the edit to provide you with the signature of a method displaying
its accepted arguments and their data types – including enumeration types.

Figure 6.21

The hint below the Update tells you all the arguments this method requires. Both arguments
in this method are optional as they have [] around them. UpdateType is of data type Long
with a default value of 1, Force is of Boolean data type with a default value of False.

 Auto Data Tips (Editor Tab)
Earlier we saw that placing the curser over a variable in debug mode displays a hint. This
option turns that feature on and off.

40 | P a g e

Compilation Explained

To round off the unit we will look at compilation.

Compilation is the act of converting our human readable code (VBA) into code the computer

understands. It may also be that your code is compiled into an intermediary format often

called object code. Either way this just illustrates that our programs are actually just a

human understandable representation of what we are telling our computers to do.

Generally you will not notice the compiler as
these setting on the left are set to
automatically compile during execution and
whilst you type.

Figure 6.22

You can explicitly force VBA IDE to compile all modules in the project.

Before you release your Access product to fellow
users it is always a good idea to explicitly execute
the Compile item in Debug menu.

One has often found debug code lingering around
forms and modules that would later cause
problems, especially once multiple users are
using the file.

Compiling before release also ensures the VBA
code executes as fast as possible.

Figure 6.23

That’s really all you need to know about compilation. For interested readers there is a little

more below about ACCDE files.

Advanced Compilation and ACCDE

While compilation as described above allows your application to execute in a multiuser

environment, it leaves all the form data, report data and VBA code available to be edited by

anyone with a full installation of MS Access. You can use the runtime/command-line switch

in a shortcut to reduce the chance of a user stumbling across the designer tools.

Alternatively we can strip out all design information make it impossible for users to edit

forms and modules. If you do this procedure make sure you keep a backup of the accdb file;

if you lose it you will never get the design information back.

41 | P a g e

To Create an ACCDE file:

Click on the File tab in the Ribbon to
expose BackStage view.

Click on Save & Publish.

Click on Make ACCDE.

42 | P a g e

Click on Save As.

A Save As dialog box will pop up.

You choose where you would like to
save the ACCDE file and under what
name.

Figure 6.24

Why use an ACCDE file?

Creating an ACCDE file removes all design code so that Forms may only be opened in Form

View and Modules cannot be debugged. So even if the SHIFT Key entry method is used no

Forms, Reports or Code can be changed.

This is useful for the following situations:

 You don’t want users to change your forms, reports or code.

 It creates a more stable Access Database for multi-user environments.

 You want to protect your intellectual property.

 You want to publish your Access Database.

Multi-Users Environments

From first-hand experience in multi-user environments you are advised to only give end-

users ACCDE or MDE files and split your back- and front-ends. Giving access to the ACCDB

runs the possibility of inadvertent changes to form properties – e.g. when a user applies a

filter to the form – and when saved this very well may corrupt your database.

43 | P a g e

Corrupt databases can be recovered but on the off-chance it is not possible it is not worth the

risk. You’ll lose a day’s work at least (if not everything) if backups of your file server haven’t

been kept.

44 | P a g e

Questions

1. Which of the following describes a breakpoint?

a. A red dot on the left.

b. A green bar across the highlighted code.

c. A point in the code that interrupts execution.

d. Max number of function called before crashing.

e. A corrupt database.

2. Which of the following describe debugging?

a. Ridding code of errors.

b. Cleaning the mouse.

c. A Honey trap for VBA code.

d. Inspecting run-time code for errors.

e. Command-line interface for IDE functions.

3. What do the following icons mean

4. Explain the uses of the following characters in the Immediate Window

?

:

;

Dim

45 | P a g e

5. What is the result of executing the following code

t=-1 : For t=t to 5 : ?t : Next t

6. When typing the DoCmd object and hitting “.” What may happen?

a. Object members are listed.

b. Quick Info may display.

c. Computer may beep at you.

d. Compiles your VBA code.

e. Resets the IDE’s editor tools.

7. In the immediate window what can you not do?

a. Use the keyword Dim to instantiate objects.

b. Access scoped variables.

c. Inspect variable values.

d. Execute snippets of code.

8. What is wrong with the following code?

? a= ; a; "oioi"; "."

9. What does the Debug menu item Clear All Breakpoints do?

10. How to use quick watch?

11. Which of the following lines will cause an error?

a. A = myFunc(a)

b. A = myFunc a

c. C = A + myFunc (12)

d. Call myFunc(12)

e. C = myFunc(12)

12. True or False?

a. The debugger will compile and execute your code.

b. The IDE will assist with most syntax problems.

46 | P a g e

c. Option Explicit should be used as little as possible.

d. Debugging Modules involves (by default) a lot of red and yellow lines.

e. Watches window displays the time.

f. The immediate window is always in execution scope.

g. In debug mode placing the curser over a variable displays its value.

13. An ACCDE is a compiled version of an ACCDB file?

14. What’s the difference between an ACCDB and MDB?

15. Breakpoints are activated at run-time?

16. ACCDE files do not have breakpoints? True or False

17. True or False? Using Debug.Print slows down your application.

18. True or False? You should tick the box that says “Break on All Errors” when handing

over the databse to an end user.

19. True or False? Functions can’t be called from the immediate window.

20. True or False? The Debug control bar is always visible and cannot be removed.

47 | P a g e

Answers – Functions, Sub Procedures and Arguments

1. If you want a returned value

2. a

3. b, c, d

4. a-d, b-c, c-a, d-b

5. a

a. sqr

b. date()

c. now()

d. datediff

e. CStr

f. IsEmpty

g. IsNull

h. DSum

i. CDate

6. TypeName

7.

a. Date

b. Function

c. Yes

d. i

8. a-b, b-e, c-c, d-a, e-d

9. Now() has a time element, Date() has only date

10. 2

11. Function

a. Function textAddNumber (myText As String, myNumber as Long) As String

b. textAddNumber = myTest + “ “ + CStr(myNumber)

a. End Function

b.

c. Function textAddNumber (myText As String, myNumber as Long) As String

d. textAddNumber = myTest; “ “; CStr(myNumber)

c. End Function

12. Sub

e. Sub calculate(a As Integer, b String, c String)

f. Dim houseNo As Integer

g. Dim teleNum As String

h. Dim Surname As String

i. Dim d As String

j. D = CStr(houseNo) + telNum + Surname

k. Debug.print d

l. End Sub

13. eg. DLookup(“[surname],”[pupils]”,”id=1192”

14. eg. DCount(“*”,”[students]”, “left([telephone],3)=””555”””)

15. see page on dates for answers

16. All are true :)

17. Function

a. Function getElement(myArray as Variant, i as Integer)

b. getElement = myArray(i)

48 | P a g e

c. End Function

18. Multi choice

a. A

b. B

c. B

d. C

e. C

f. A

19. Button 3 doesn’t have an event procedure, specifically no onClick or onDblClick

20. Multiple answers

a. Optional means name doesn’t have to be passed

b. Julia

c. Donothing4

d. “Morning Dave. My name is Hal 9000”

49 | P a g e

Answers - Debugging

1. (a) and (c)

2. (a) and (d)

3.

This button allows the developer to “step over” a function.

This button toggles the visibility of the immediate window.

On a line which contains a user-defined function the Step-In follows execution
into the next function or procedure.

The hand toggles a breakpoint on current line.

Quick Watch creates a quick watch item using the currently selected variable.

4.

?

Prints out a variable or return value of a function.

:

Concatenates commands.

;

Concatenates a string.

Dim

Cannot be used in the immediate window.

5. It prints out -1, 0, 1, 2, 3, 4, 5 in the immediate window.

6. (a)

7. (a)

8. A requires a value - ? a= 1; a; "oioi"; "."

9. It removes all breakpoints from the code in the active module.

10. Highlight a variable you would like to watch click on the quick watch button in the

debug bar.

11. (b)

12. See answers below.

a. False

b. True

c. False

d. False

e. False

f. False

g. True

13. True

14. MDB are legacy files, pre Access 2007.

15. True

16. True

17. True

18. False – This should only be ticked when a developer uses it.

19. False

20. False

50 | P a g e

